Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 10(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37248046

RESUMO

Lateralization of hippocampal function is indicated by varied outcomes of patients with neurologic disorders that selectively affect one hemisphere of this structure, such as temporal lobe epilepsy (TLE). The intrahippocampal kainic acid (IHKA) injection model of TLE allows for targeted damage to the left or right hippocampus, enabling systematic comparison of effects of left-right asymmetry on seizure and nonseizure outcomes. Although varying nonseizure phenotypic outcomes based on injection side in dorsal hippocampus were recently evaluated in this model, differences in chronic seizure patterns in left- (IHKA-L) versus right-injected (IHKA-R) IHKA animals have yet to be evaluated. Here, we assessed hippocampal seizure incidence in male and female IHKA-L and IHKA-R mice. Females displayed increased electrographic seizure activity compared with males at both two and four months postinjection. In addition, IHKA-L females showed higher seizure frequency than IHKA-R on diestrus and estrus at two months postinjection, but seizure duration and percent time in seizures were only higher in IHKA-L females on diestrus. These cycle stage-associated changes, however, did not persist to four months postinjection. Furthermore, this lateralized difference in seizure burden was not observed in males. These results indicate for the first time that the side of IHKA injection can shape chronic electrographic seizure burden. Overall, these results demonstrate a female-specific left-right asymmetry in hippocampal function can interact with estrous cycle stage to shape chronic seizures in mice with epilepsy, with implications for neural activity and behavior in both normal and disease states.


Assuntos
Epilepsia do Lobo Temporal , Convulsões , Masculino , Camundongos , Feminino , Animais , Convulsões/induzido quimicamente , Epilepsia do Lobo Temporal/induzido quimicamente , Hipocampo , Lobo Temporal , Ciclo Estral , Ácido Caínico/toxicidade
2.
Exp Neurol ; 364: 114389, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990138

RESUMO

Gonadotropin hormone release from the anterior pituitary is critical to regulating reproductive endocrine function. Clinical evidence has documented that people with epilepsy display altered levels of gonadotropin hormones, both acutely following seizures and chronically. Despite this relationship, pituitary function remains a largely understudied avenue in preclinical epilepsy research. Recently, we showed that females in the intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy displayed changes in pituitary expression of gonadotropin hormone and gonadotropin-releasing hormone (GnRH) receptor genes. Circulating gonadotropin hormone levels, however, have yet to be measured in an animal model of epilepsy. Here, we evaluated the circulating levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), GnRH receptor (Gnrhr) gene expression, and sensitivity to exogenous GnRH in IHKA males and females. Although no changes in overall dynamics of pulsatile patterns of LH release were found in IHKA mice of either sex, estrus vs. diestrus changes in basal and mean LH levels were larger in IHKA females with prolonged, disrupted estrous cycles. In addition, IHKA females displayed increased pituitary sensitivity to GnRH and higher Gnrhr expression. The hypersensitivity to GnRH was observed on diestrus, but not estrus. Chronic seizure severity was not found to be correlated with LH parameters, and FSH levels were unchanged in IHKA mice. These results indicate that although there are changes in pituitary gene expression and sensitivity to GnRH in IHKA females, there may also be compensatory mechanisms that aid in maintaining gonadotropin release in the state of chronic epilepsy in this model.


Assuntos
Epilepsia do Lobo Temporal , Hipófise , Masculino , Feminino , Camundongos , Animais , Hipófise/metabolismo , Hormônio Luteinizante , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Foliculoestimulante/metabolismo , Epilepsia do Lobo Temporal/metabolismo
3.
bioRxiv ; 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36712086

RESUMO

Lateralization of hippocampal function is indicated by varied outcomes of patients with neurological disorders that selectively affect one hemisphere of this structure, such as temporal lobe epilepsy (TLE). The intrahippocampal kainic acid (IHKA) injection model of TLE allows for targeted damage to the left or right hippocampus, enabling systematic comparison of effects of left-right asymmetry on seizure and non-seizure outcomes. Although varying non-seizure phenotypic outcomes based on injection side in dorsal hippocampus were recently evaluated in this model, differences in chronic seizure patterns in left- (IHKA-L) vs. right-injected (IHKA-R) IHKA animals have yet to be evaluated. Here, we evaluated hippocampal seizure incidence in male and female IHKA-L and IHKA-R mice. Females displayed increased electrographic seizure activity compared to males at both 2 months and 4 months post-injection (mpi). In addition, IHKA-L females showed higher seizure frequency than IHKA-R on diestrus and estrus at 2 mpi, but seizure duration and time in seizures were only higher in IHKA-L females on diestrus. These cycle stage-associated changes, however, did not persist to 4 mpi. Furthermore, this lateralized difference in seizure burden was not observed in males. These results indicate for the first time that the side of IHKA injection can shape chronic electrographic seizure burden. Overall, these results demonstrate a female-specific left-right asymmetry in hippocampal function can interact with estrous cycle stage to shape chronic seizures in mice with epilepsy, with implications for neural activity and behavior in both normal and disease states.

4.
Neurobiol Dis ; 172: 105822, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868435

RESUMO

Patients with epilepsy develop reproductive endocrine comorbidities at a rate higher than that of the general population. Clinical studies have identified disrupted luteinizing hormone (LH) release patterns in patients of both sexes, suggesting potential epilepsy-associated changes in hypothalamic gonadotropin-releasing hormone (GnRH) neuron function. In previous work, we found that GnRH neuron firing is increased in diestrous females and males in the intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy. Notably, GABAA receptor activation is depolarizing in adult GnRH neurons. Therefore, here we tested the hypothesis that increased GnRH neuron firing in IHKA mice is associated with increased GABAergic drive to GnRH neurons. When ionotropic glutamate receptors (iGluRs) were blocked to isolate GABAergic postsynaptic currents (PSCs), no differences in PSC frequency were seen between GnRH neurons from control and IHKA diestrous females. In the absence of iGluR blockade, however, GABA PSC frequency was increased in GnRH neurons from IHKA females with disrupted estrous cycles, but not saline-injected controls nor IHKA females without estrous cycle disruption. GABA PSC amplitude was also increased in IHKA females with disrupted estrous cycles. These findings suggest the presence of an iGluR-dependent increase in feed-forward GABAergic transmission to GnRH neurons specific to IHKA females with comorbid cycle disruption. In males, GABA PSC frequency and amplitude were unchanged but PSC duration was reduced. Together, these findings suggest that increased GABA transmission helps drive elevated firing in IHKA females on diestrus and indicate the presence of a sex-specific hypothalamic mechanism underlying reproductive endocrine dysfunction in IHKA mice.


Assuntos
Hormônio Liberador de Gonadotropina , Ácido Caínico , Animais , Ciclo Estral , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Receptores de GABA-A , Ácido gama-Aminobutírico/fisiologia
5.
Exp Neurol ; 355: 114118, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597270

RESUMO

Clinical evidence indicates that patients with temporal lobe epilepsy (TLE) often show differential outcomes of comorbid conditions in relation to the lateralization of the seizure focus. A particularly strong relationship exists between the side of seizure focus and the propensity for distinct reproductive endocrine comorbidities in women with TLE. Therefore, here we evaluated whether targeting of left or right dorsal hippocampus for intrahippocampal kainic acid (IHKA) injection, a model of TLE, produces different outcomes in hippocampal granule cell dispersion, body weight gain, and multiple measures of reproductive endocrine dysfunction in female mice. One, two, and four months after IHKA or saline injection, in vivo measurements of estrous cycles and weight were followed by ex vivo examination of hippocampal dentate granule cell dispersion, circulating ovarian hormone and corticosterone levels, ovarian morphology, and pituitary gene expression. IHKA mice with right-targeted injection (IHKA-R) showed greater granule cell dispersion and pituitary Fshb expression compared to mice with left-targeted injection (IHKA-L). By contrast, pituitary expression of Lhb and Gnrhr were higher in IHKA-L mice compared to IHKA-R, but these values were not different from respective saline-injected controls. IHKA-L mice also showed an increased rate of weight gain compared to IHKA-R mice. Increases in estrous cycle length, however, were similar in both IHKA-L and IHKA-R mice. These findings indicate that although major reproductive endocrine dysfunction phenotypes present similarly after targeting left or right dorsal hippocampus for IHKA injection, distinct underlying mechanisms based on lateralization of epileptogenic insult may contribute to produce similar emergent reproductive endocrine outcomes.


Assuntos
Epilepsia do Lobo Temporal , Ácido Caínico , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Ácido Caínico/toxicidade , Camundongos , Fenótipo , Convulsões/metabolismo
6.
Exp Neurol ; 334: 113492, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007292

RESUMO

Women with catamenial epilepsy often experience increased seizure burden near the time of ovulation (periovulatory) or menstruation (perimenstrual). To date, a rodent model of chronic temporal lobe epilepsy (TLE) that exhibits similar endogenous fluctuations in seizures has not been identified. Here, we investigated whether seizure burden changes with the estrous cycle in the intrahippocampal kainic acid (IHKA) mouse model of TLE. Adult female IHKA mice and saline-injected controls were implanted with EEG electrodes in the ipsilateral hippocampus. At one and two months post-injection, 24/7 video-EEG recordings were collected and estrous cycle stage was assessed daily. Seizures were detected using a custom convolutional neural network machine learning process. Seizure burden was compared within each mouse between diestrus and combined proestrus and estrus days (pro/estrus) at two months post-injection. IHKA mice showed higher seizure burden on pro/estrus compared with diestrus, characterized by increased time in seizures and longer seizure duration. When all IHKA mice were included, no group differences were observed in seizure frequency or EEG power. However, increased baseline seizure burden on diestrus was correlated with larger cycle-associated differences, and when analyses were restricted to mice that showed the severe epilepsy typical of the IHKA model, increased seizure frequency on pro/estrus was also revealed. Controls showed no differences in EEG parameters with cycle stage. These results suggest that the stages of proestrus and estrus are associated with higher seizure burden in IHKA mice. The IHKA model may thus recapitulate at least some aspects of reproductive cycle-associated seizure clustering.


Assuntos
Modelos Animais de Doenças , Epilepsia do Lobo Temporal/fisiopatologia , Ciclo Estral/fisiologia , Reprodução/fisiologia , Convulsões/fisiopatologia , Animais , Doença Crônica , Eletroencefalografia/métodos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...