Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401435, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739532

RESUMO

Artificial organelles serve as functional counterparts to natural organelles, which are primarily employed to artificially replicate, restore, or enhance cellular functions. While most artificial organelles exhibit basic functions, we diverge from this norm by utilizing poly(ferrocenylmethylethylthiocarboxypropylsilane) microcapsules (PFC MCs) to construct multifunctional artificial organelles through water/oil interfacial self-assembly. Within these PFC MCs, enzymatic cascades are induced through active molecular exchange across the membrane to mimic the functions of enzymes in mitochondria. We harness the inherent redox properties of the PFC polymer, which forms the membrane, to facilitate in-situ redox reactions similar to those supported by the inner membrane of natural mitochondria. Subsequent studies have demonstrated the interaction between PFC MCs and living cell including extended lifespans within various cell types. We anticipate that functional PFC MCs have the potential to serve as innovative platforms for organelle mimics capable of executing specific cellular functions.

2.
Eur Phys J E Soft Matter ; 46(11): 107, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917241

RESUMO

Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.


Assuntos
Proteínas do Capsídeo , Capsídeo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Estireno/análise , Estireno/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Vírus 40 dos Símios/química , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/metabolismo , Montagem de Vírus
3.
Nanoscale ; 15(42): 16890-16895, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37847510

RESUMO

The chiral environment of enantiomerically pure D-alanine solutions is observed to disrupt and modify the entropy-driven assembly of cellulose nanocrystals (CNCs) into a chiral nematic mesophase. The effect is specific to D-alanine and cannot be attributed to the adsorption of alanine molecules (neither D- nor L-alanine) onto the CNC particles.

4.
ACS Nano ; 17(14): 13147-13157, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37417667

RESUMO

Despite the worldwide success of mRNA-LNP Covid-19 vaccines, the nanoscale structures of these formulations are still poorly understood. To fill this gap, we used a combination of atomic force microscopy (AFM), dynamic light scattering (DLS), transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryo-TEM), and the determination of the intra-LNP pH gradient to analyze the nanoparticles (NPs) in BNT162b2 (Comirnaty), comparing it with the well-characterized PEGylated liposomal doxorubicin (Doxil). Comirnaty NPs had similar size and envelope lipid composition to Doxil; however, unlike Doxil liposomes, wherein the stable ammonium and pH gradient enables accumulation of 14C-methylamine in the intraliposomal aqueous phase, Comirnaty LNPs lack such pH gradient in spite of the fact that the pH 4, at which LNPs are prepared, is raised to pH 7.2 after loading of the mRNA. Mechanical manipulation of Comirnaty NPs with AFM revealed soft, compliant structures. The sawtooth-like force transitions seen during cantilever retraction imply that molecular strands, corresponding to mRNA, can be pulled out of NPs, and the process is accompanied by stepwise rupture of mRNA-lipid bonds. Unlike Doxil, cryo-TEM of Comirnaty NPs revealed a granular, solid core enclosed by mono- and bilipid layers. Negative staining TEM shows 2-5 nm electron-dense spots in the LNP's interior that are aligned into strings, semicircles, or labyrinth-like networks, which may imply cross-link-stabilized RNA fragments. The neutral intra-LNP core questions the dominance of ionic interactions holding together this scaffold, raising the possibility of hydrogen bonding between mRNA and the lipids. Such interaction, described previously for another mRNA/lipid complex, is consistent with the steric structure of the ionizable lipid in Comirnaty, ALC-0315, displaying free ═O and -OH groups. It is hypothesized that the latter groups can get into steric positions that enable hydrogen bonding with the nitrogenous bases in the mRNA. These structural features of mRNA-LNP may be important for the vaccine's activities in vivo.


Assuntos
COVID-19 , Nanopartículas , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , Ligação de Hidrogênio , RNA Mensageiro/genética , Nanopartículas/química , Lipídeos/química , Lipossomos/química , RNA Interferente Pequeno/química
5.
Polymers (Basel) ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904365

RESUMO

Weak polyelectrolytes (WPEs) are responsive materials used as active charge regulators in a variety of applications, including controlled release and drug delivery in crowded bio-related and synthetic environments. In these environments, high concentrations of solvated molecules, nanostructures, and molecular assemblies are ubiquitous. Here, we investigated the effect of high concentrations of non-adsorbing, short chains of poly(vinyl alcohol), PVA, and colloids dispersed by the very same polymers on charge regulation (CR) of poly(acrylic acid), PAA. PVA does not interact with PAA (throughout the full pH range) and thus can be used to examine the role of non-specific (entropic) interactions in polymer-rich environments. Titration experiments of PAA (mainly 100 kDa in dilute solutions, no added salt) were carried out in high concentrations of PVA (13-23 kDa, 5-15 wt%) and dispersions of carbon black (CB) decorated by the same PVA (CB-PVA, 0.2-1 wt%). The calculated equilibrium constant (and pKa) was up-shifted in PVA solutions by up to ~0.9 units and down-shifted in CB-PVA dispersions by ~0.4 units. Thus, while solvated PVA chains increase the charging of the PAA chains, as compared to PAA in water, CB-PVA particles reduce PAA charging. To investigate the origins of the effect, we analyzed the mixtures using small-angle X-ray scattering (SAXS) and cryo-TEM imaging. The scattering experiments revealed re-organization of the PAA chains in the presence of the solvated PVA but not in the CB-PVA dispersions. These observations clearly indicate that the acid-base equilibrium and the degree of ionization of PAA in crowded liquid environments is affected by the concentration, size, and geometry of seemingly non-interacting additives, probably due to depletion and excluded volume interactions. Thus, entropic effects that do not depend on specific interactions should be taken into consideration when designing functional materials in complex fluid environments.

6.
Biochim Biophys Acta Proteins Proteom ; 1871(2): 140869, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400388

RESUMO

We investigated how the self-association of isolated tubulin dimers affects the rate of GTP hydrolysis and the equilibrium of nucleotide exchange. Both reactions are relevant for microtubule (MT) dynamics. We used HPLC to determine the concentrations of GDP and GTP and thereby the GTPase activity of SEC-eluted tubulin dimers in assembly buffer solution, free of glycerol and tubulin aggregates. When GTP hydrolysis was negligible, the nucleotide exchange mechanism was studied by determining the concentrations of tubulin-free and tubulin-bound GTP and GDP. We observed no GTP hydrolysis below the critical conditions for MT assembly (either below the critical tubulin concentration and/or at low temperature), despite the assembly of tubulin 1D curved oligomers and single-rings, showing that their assembly did not involve GTP hydrolysis. Under conditions enabling spontaneous slow MT assembly, a slow pseudo-first-order GTP hydrolysis kinetics was detected, limited by the rate of MT assembly. Cryo-TEM images showed that GTP-tubulin 1D oligomers were curved also at 36 °C. Nucleotide exchange depended on the total tubulin concentration and the molar ratio between tubulin-free GDP and GTP. We used a thermodynamic model of isodesmic tubulin self-association, terminated by the formation of tubulin single-rings to determine the molar fractions of dimers with exposed and buried nucleotide exchangeable sites (E-sites). Our analysis shows that the GDP to GTP exchange reaction equilibrium constant was an order-of-magnitude larger for tubulin dimers with exposed E-sites than for assembled dimers with buried E-sites. This conclusion may have implications on the dynamics at the tip of the MT plus end.


Assuntos
Nucleotídeos , Tubulina (Proteína) , Hidrólise , Guanosina Trifosfato , Microtúbulos , Polímeros
7.
J Phys Chem Lett ; 13(41): 9725-9735, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36222421

RESUMO

Tubulin nucleation is a highly frequent event in microtubule (MT) dynamics but is poorly understood. In this work, we characterized the structural changes during the initial nucleation phase of dynamic tubulin. Using size-exclusion chromatography-eluted tubulin dimers in an assembly buffer solution free of glycerol and tubulin aggregates enabled us to start from a well-defined initial thermodynamic ensemble of isolated dynamic tubulin dimers and short oligomers. Following a temperature increase, time-resolved X-ray scattering and cryo-transmission electron microscopy during the initial nucleation phase revealed an isodesmic assembly mechanism of one-dimensional (1D) tubulin oligomers (where dimers were added and/or removed one at a time), leading to sufficiently stable two-dimensional (2D) dynamic nanostructures, required for MT assembly. A substantial amount of tubulin octamers accumulated before two-dimensional lattices appeared. Under subcritical assembly conditions, we observed a slower isodesmic assembly mechanism, but the concentration of 1D oligomers was insufficient to form the multistranded 2D nucleus required for MT formation.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/análise , Tubulina (Proteína)/química , Glicerol/análise , Raios X , Polímeros
8.
Cancers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230729

RESUMO

Peptide nucleic acid (PNA) may be used in various biomedical applications; however, these are currently limited, due to its low solubility in aqueous solutions. In this study, a methodology to overcome this limitation is demonstrated, as well as the effect of PNA on cell viability. We show that extruding a mixture of natural phospholipids and short (6-22 bases), cytosine-rich PNA through a 100 nm pore size membrane under mild acidic conditions resulted in the formation of small (60-90 nm in diameter) multilamellar vesicles (SMVs) comprising several (3-5) concentric lipid membranes. The PNA molecules, being positively charged under acidic conditions (due to protonation of cytosine bases in the sequence), bind electrostatically to negatively charged phospholipid membranes. The large membrane surface area allowed the encapsulation of thousands of PNA molecules in the vesicle. SMVs were conjugated with the designed ankyrin repeat protein (DARPin_9-29), which interacts with human epidermal growth factor receptor 2 (HER2), overexpressed in human breast cancer. The conjugate was shown to enter HER2-overexpressing cells by receptor-mediated endocytosis. PNA molecules, released from lysosomes, aggregate in the cytoplasm into micron-sized particles, which interfere with normal cell functioning, causing cell death. The ability of DARPin-functionalized SMVs to specifically deliver large quantities of PNA to cancer cells opens a new promising avenue for cancer therapy.

9.
J Phys Chem Lett ; : 5246-5252, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35671351

RESUMO

Cold tubulin dimers coexist with tubulin oligomers and single rings. These structures are involved in microtubule assembly; however, their dynamics are poorly understood. Using state-of-the-art solution synchrotron time-resolved small-angle X-ray scattering, we discovered a disassembly catastrophe (half-life of ∼0.1 s) of tubulin rings and oligomers upon dilution or addition of guanosine triphosphate. A slower disassembly (half-life of ∼38 s) was observed following an increase in temperature. Our analysis showed that the assembly and disassembly processes were consistent with an isodesmic mechanism, involving a sequence of reversible reactions in which dimers were rapidly added or removed one at a time, terminated by a 2 order-of-magnitude slower ring-closing/opening step. We revealed how assembly conditions varied the mass fraction of tubulin in each of the coexisting structures, the rate constants, and the standard Helmholtz free energies for closing a ring and for longitudinal dimer-dimer associations.

10.
Polymers (Basel) ; 14(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35567095

RESUMO

Weak polyelectrolytes (WPEs) are widely used as pH-responsive materials, pH modulators and charge regulators in biomedical and technological applications that involve multi-component fluid environments. In these complex fluids, coupling between (often weak) interactions induced by micelles, nanoparticles and molecular aggregates modify the pKa as compared to that measured in single component solutions. Here we investigated the effect of coupling between hydrogen bonding and excluded volume interactions on the titration curves and pKa of polyacrylic acid (PAA) in solutions comprising PEO-based micelles (Pluronics and Brij-S20) of different size and volume fraction. Titration experiments of dilute, salt-free solutions of PAA (5 kDa, 30 kDa and 100 kDa) at low degree of polymer ionization (α < 0.25) drive spatial re-organization of the system, reduce the degree of ionization and consequentially increase the pKa by up to ~0.7 units. These findings indicate that the actual degree of ionization of WPEs measured in complex fluids is significantly lower (at a given pH) than that measured in single-component solutions.

11.
Nanomaterials (Basel) ; 11(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34835823

RESUMO

Hybrids comprising cellulose nanocrystals (CNCs) and percolated networks of single-walled carbon nanotubes (SWNTs) may serve for the casting of hybrid materials with improved optical, mechanical, electrical, and thermal properties. However, CNC-dispersed SWNTs are depleted from the chiral nematic (N*) phase and enrich the isotropic phase. Herein, we report that SWNTs dispersed by non-ionic surfactant or triblock copolymers are incorporated within the surfactant-mediated CNC mesophases. Small-angle X-ray measurements indicate that the nanostructure of the hybrid phases is only slightly modified by the presence of the surfactants, and the chiral nature of the N* phase is preserved. Cryo-TEM and Raman spectroscopy show that SWNTs networks with typical mesh size from hundreds of nanometers to microns are distributed equally between the two phases. We suggest that the adsorption of the surfactants or polymers mediates the interfacial interaction between the CNCs and SWNTs, enhancing the formation of co-existing meso-structures in the hybrid phases.

12.
ACS Chem Biol ; 16(11): 2212-2227, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34643366

RESUMO

Tubulin self-association is a critical process in microtubule dynamics. The early intermediate structures, energetics, and their regulation by fluxes of chemical energy, associated with guanosine triphosphate (GTP) hydrolysis, are poorly understood. We reconstituted an in vitro minimal model system, mimicking the key elements of the nontemplated tubulin assembly. To resolve the distribution of GTP- and guanosine diphosphate (GDP)-tubulin structures, at low temperatures (∼10 °C) and below the critical concentration for the microtubule assembly, we analyzed in-line size-exclusion chromatography-small-angle X-ray scattering (SEC-SAXS) chromatograms of GTP- and GDP-tubulin solutions. Both solutions rapidly attained steady state. The SEC-SAXS data were consistent with an isodesmic thermodynamic model of longitudinal tubulin self-association into 1D oligomers, terminated by the formation of tubulin single rings. The analysis showed that free dimers coexisted with tetramers and hexamers. Tubulin monomers and lateral association between dimers were not detected. The dimer-dimer longitudinal self-association standard Helmholtz free energies were -14.2 ± 0.4 kBT (-8.0 ± 0.2 kcal mol-1) and -13.1 ± 0.5 kBT (-7.4 ± 0.3 kcal mol-1) for GDP- and GTP-tubulin, respectively. We then determined the mass fractions of dimers, tetramers, and hexamers as a function of the total tubulin concentration. A small fraction of stable tubulin single rings, with a radius of 19.2 ± 0.2 nm, was detected in the GDP-tubulin solution. In the GTP-tubulin solution, this fraction was significantly lower. Cryo-TEM images and SEC-multiangle light-scattering analysis corroborated these findings. Our analyses provide an accurate structure-stability description of cold tubulin solutions.


Assuntos
Guanosina Difosfato/química , Guanosina Trifosfato/química , Tubulina (Proteína)/química , Microscopia Crioeletrônica , Cinética , Microscopia Eletrônica de Transmissão , Microtúbulos , Conformação Proteica , Espalhamento a Baixo Ângulo , Termodinâmica , Difração de Raios X
13.
Int J Pharm ; 604: 120740, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34062232

RESUMO

Oxaliplatin palmitate acetate (OPA), a platinum (IV) oxaliplatin derivative, was previously designed with the aim to improve the platinum-based anti-cancer therapy. In this work, we further explore the potential of OPA in extensive in vitro and in vivo studies. OPA in pancreatic (BxPC3-luc), lung (NCI-H1993) and liver (Hep3B) cancer cell lines showed a higher toxicity in comparison to oxaliplatin. The in vitro release kinetic experiments of OPA from the nanoparticles (NPs) under sink conditions exhibited a very rapid profile. Furthermore, OPA cannot be considered a prodrug of oxaliplatin, based on the OPA intact molecule pharmacokinetic profile study in rats. The formation of oxaliplatin from the biodegradation of OPA ranges only from 5% to 7% and both drugs were rapidly eliminated from the plasma. Pharmacokinetics of OPA PLGA nanoparticles in mice showed that nanoparticles failed to prolong the release of OPA in the plasma and did not add any therapeutic benefit over OPA solution, as suggested by the rapid in vitro release of OPA from nanoparticles. In pancreatic xenograft BxPC3-luc cancer model, both OPA in solution and OPA nanoparticles inhibited the tumor growth, equally and significantly, as compared to oxaliplatin. In liver xenograft Hep3B cancer model, OPA solution and cisplatin demonstrated good and similar antitumor efficacy. In lung xenograft NCI-H1993 cancer model, OPA solution, with a significant antitumor efficacy, was superior to cisplatin, which did not differ from the vehicle. In conclusion, OPA may offer a promising advance in platinum-based chemotherapy against various forms of cancers in an adequate dose and schedule.


Assuntos
Antineoplásicos , Palmitatos , Acetatos , Animais , Cisplatino , Camundongos , Oxaliplatina , Ratos , Distribuição Tecidual
14.
Biophys J ; 120(16): 3455-3469, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34087214

RESUMO

Protein aggregation is involved in a variety of diseases, including neurodegenerative diseases and cancer. The cellular environment is crowded by a plethora of cosolutes comprising small molecules and biomacromolecules at high concentrations, which may influence the aggregation of proteins in vivo. To account for the effect of cosolutes on cancer-related protein aggregation, we studied their effect on the aggregation of the cancer-related L106R mutant of the Axin protein. Axin is a key player in the Wnt signaling pathway, and the L106R mutation in its RGS domain results in a native molten globule that tends to form native-like aggregates. This results in uncontrolled activation of the Wnt signaling pathway, leading to cancer. We monitored the aggregation process of Axin RGS L106R in vitro in the presence of a wide ensemble of cosolutes including polyols, amino acids, betaine, and polyethylene glycol crowders. Except myo-inositol, all polyols decreased RGS L106R aggregation, with carbohydrates exerting the strongest inhibition. Conversely, betaine and polyethylene glycols enhanced aggregation. These results are consistent with the reported effects of osmolytes and crowders on the stability of molten globular proteins and with both amorphous and amyloid aggregation mechanisms. We suggest a model of Axin L106R aggregation in vivo, whereby molecularly small osmolytes keep the protein as a free soluble molecule but the increased crowding of the bound state by macromolecules induces its aggregation at the nanoscale. To our knowledge, this is the first systematic study on the effect of osmolytes and crowders on a process of native-like aggregation involved in pathology, as it sheds light on the contribution of cosolutes to the onset of cancer as a protein misfolding disease and on the relevance of aggregation in the molecular etiology of cancer.


Assuntos
Neoplasias , Polietilenoglicóis , Amiloide , Proteína Axina/genética , Mutação , Neoplasias/genética , Transdução de Sinais
15.
ACS Nano ; 15(5): 8836-8847, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33900736

RESUMO

Tubulin, an essential cytoskeletal protein, assembles into various morphologies by interacting with an array of cellular factors. One of these factors is the endogenous polyamine spermine, which may promote and stabilize tubulin assemblies. Nevertheless, the assembled structures and their formation pathways are poorly known. Here we show that spermine induced the in vitro assembly of tubulin into several hierarchical architectures based on a tubulin conical-spiral subunit. Using solution X-ray scattering and cryo-TEM, we found that with progressive increase of spermine concentration tubulin dimers assembled into conical-frustum-spirals of increasing length, containing up to three helical turns. The subunits with three helical turns were then assembled into tubules through base-to-top packing and formed antiparallel bundles of tubulin conical-spiral tubules in a distorted hexagonal symmetry. Further increase of the spermine concentration led to inverted tubulin tubules assembled in hexagonal bundles. Time-resolved experiments revealed that tubulin assemblies formed at higher spermine concentrations assembled from intermediates, similar to those formed at low spermine concentrations. These results are distinct from the classical transition between twisted ribbons, helical, and tubular assemblies, and provide insight into the versatile morphologies that tubulin can form. Furthermore, they may contribute to our understanding of the interactions that control the composition and construction of protein-based biomaterials.


Assuntos
Espermina , Tubulina (Proteína) , Microtúbulos , Polímeros
16.
Microorganisms ; 9(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806534

RESUMO

Functional amyloid proteins often appear as fibers in extracellular matrices of microbial soft colonies. In contrast to disease-related amyloid structures, they serve a functional goal that benefits the organism that secretes them, which is the reason for the title "functional". Biofilms are a specific example of a microbial community in which functional amyloid fibers play a role. Functional amyloid proteins contribute to the mechanical stability of biofilms and mediate the adhesion of the cells to themselves as well as to surfaces. Recently, it has been shown that functional amyloid proteins also play a regulatory role in biofilm development. TasA is the major proteinaceous fibrilar component of the extracellular matrix of biofilms made of the soil bacterium and Gram-positive Bacillus subtilis. We have previously shown, as later corroborated by others, that in acidic solutions, TasA forms compact aggregates that are composed of tangled fibers. Here, we show that in a neutral pH and above a certain TasA concentration, the fibers of TasA are elongated and straight and that they bundle up in highly concentrated salt solutions. TasA fibers resemble the canonic amyloid morphology; however, these fibers also bear an interesting nm-scale periodicity along the fiber axis. At the molecular level, TasA fibers contain a twisted ß-sheet structure, as indicated by circular dichroism measurements. Our study shows that the morphology of TasA fibers depends on the environmental conditions. Different fibrilar morphologies may be related with different functional roles in biofilms, ranging from granting biofilms with a mechanical support to acting as antibiotic agents.

17.
Pharmaceutics ; 13(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478023

RESUMO

Nano-drugs based on nanoparticles (NP) or on nano-assemblies as carriers of the active pharmaceutical ingredient (API) are often expected to perform better compared to conventional dosage forms. Maximum realization of this potential though requires optimization of multiple physico-chemical, including structural and morphological, parameters. Meaningful distributions of these parameters derived from sufficient populations of individual NPs rather than ensemble distributions are desirable for this task, provided that relevant high-resolution data is available. In this study we demonstrate powerful capabilities of the up-to-date cryogenic transmission electron-microscopy (cryo-TEM) as well as correlations with other techniques abundant in the nano-research milieu. We explored Doxil®-like (an anticancer drug and the first FDA-approved nano-drug) (75-100 nm) PEGylated liposomes encapsulating single doxorubicin-sulfate nano-rod-crystals (PLD). These crystals induce liposome sphere-to-ellipsoid deformation. Doxil® was characterized by a multitude of physicochemical methods. We demonstrate, that accompanied by advanced image-analysis means, cryo-TEM can successfully enable the determination of multiple structural parameters of such complex liposomal nano-drugs with an added value of statistically-sound distributions. The latter could not be achieved by most other physicochemical approaches. It seems that cryo-TEM is capable of quantitative description of individual liposome morphological features, including meaningful distributions of all structural elements, with averages that correlate with other physical methods. Here it is demonstrated that such quantitative cryo-TEM analysis is a powerful tool in determining what is the optimal drug to lipid ratio in PLD, which is found to be the drug to lipid ratio existing in Doxil®.

18.
Nano Lett ; 20(9): 6598-6605, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787154

RESUMO

Ordered mesoporous silica materials gain high interest because of their potential applications in catalysis, selective adsorption, separation, and controlled drug release. Due to their morphological characteristics, mainly the tunable, ordered nanometric pores, they can be utilized as supporting hosts for confined chemical reactions. Applications of these materials, however, are limited by structural design. Here, we present a new approach for the 3D printing of complex geometry silica objects with an ordered mesoporous structure by stereolithography. The process uses photocurable liquid compositions that contain a structure-directing agent, silica precursors, and elastomer-forming monomers that, after printing and calcination, form porous silica monoliths. The objects have extremely high surface area, 1900 m2/g, and very low density and are thermally and chemically stable. This work enables the formation of ordered porous objects having complex geometries that can be utilized in applications in both the industry and academia, overcoming the structural limitations associated with traditional processing methods.

19.
Soft Matter ; 16(36): 8444-8452, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32812986

RESUMO

The self-assembly and phase behavior of cellulose nanocrystals (CNCs) in binary liquid mixtures of ethylene-glycol (EG):water was investigated. Our findings indicate that a small fraction of water delays the onset of colloidal jammed states previously reported in water-free organic solvents. Here the full phase diagram of CNCs evolves, including the chiral nematic phase (N*), characterized by long-range orientational order and non-isotropic macroscopic properties. Furthermore, the effect of the solvent-mixture composition on the properties of the CNC mesophases is found to be scale-dependent: the micron-size pitch of the N* phase decreases as the dielectric constant (εr) of the solvent mixture is reduced (higher EG content). Yet the nanometric inter-particle spacing of the CNC rods (measured using SAXS and cryo-TEM) is almost independent on the EG content. Also, unlike theoretical predictions, the transition to the biphasic regime is not sensitive to εr of the solvent mixtures and takes place at a higher CNC volume fraction than in aqueous suspensions. These observations may be rationalized by hypothesizing that vicinal water, adsorbed at the CNC surface, prevents kinetic arrest, and dictates the local dielectric constant and thus the effective diameter of the rods (via the Debye length), while εr of the liquid-mixture dominates the pitch length (micron scale) and the optical properties. These findings indicate that the water content of EG:water mixtures may be used for engineering colloidal inks where delayed kinetic arrest and jamming of the CNCs enable printing and casting of tunable, optically-active thin films and coatings.

20.
Soft Matter ; 16(11): 2803-2814, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32104873

RESUMO

Viruses are remarkable self-assembled nanobiomaterial-based machines, exposed to a wide range of pH values. Extreme pH values can induce dramatic structural changes, critical for the function of the virus nanoparticles, including assembly and genome uncoating. Tuning cargo-capsid interactions is essential for designing virus-based delivery systems. Here we show how pH controls the structure and activity of wild-type simian virus 40 (wtSV40) and the interplay between its cargo and capsid. Using cryo-TEM and solution X-ray scattering, we found that wtSV40 was stable between pH 5.5 and 9, and only slightly swelled with increasing pH. At pH 3, the particles aggregated, while capsid protein pentamers continued to coat the virus cargo but lost their positional correlations. Infectivity was only partly lost after the particles were returned to pH 7. At pH 10 or higher, the particles were unstable, lost their infectivity, and disassembled. Using time-resolved experiments we discovered that disassembly began by swelling of the particles, poking a hole in the capsid through which the genetic cargo escaped, followed by a slight shrinking of the capsids and complete disassembly. These findings provide insight into the fundamental intermolecular forces, essential for SV40 function, and for designing virus-based nanobiomaterials, including delivery systems and antiviral drugs.


Assuntos
Proteínas do Capsídeo/genética , Genoma Viral/genética , Nanopartículas/química , Vírus 40 dos Símios/química , Proteínas do Capsídeo/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Nanopartículas/uso terapêutico , Vírus 40 dos Símios/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...