Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 340: 117859, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121010

RESUMO

In this article, we identify the problem of plastic proliferation, the consequent expansion of plastic waste in our society, the inadequacies of current attempts to recycle plastic, and the urgency to address this problem in the light of the microplastic threat. It details the problems with current efforts to recycle plastic and the particularly poor recycling rates in North America (NA) when compared to certain countries in the European Union (EU). The obstacles to plastic recycling are overlapping economic, physical and regulatory problems spanning fluctuating resale market prices, residue and polymer contamination and offshore export which often circumvents the entire process. The primary differences between the EU and NA are the costs of end-of-life disposal methods with most EU citizens paying much higher prices for both landfilling and Energy from Waste (incineration) costs compared with NA. At the time of writing, some EU states are either restricted from landfilling mixed plastic waste or the cost is significantly greater than in NA ($80 to 125 USD/t vs $55 USD/t). This makes recycling a favourable option in the EU, and, in turn, has led to more industrial processing and innovation, more recycled product uptake, and the structuring of collection and sorting methods that favour cleaner polymer streams. This is a self-re-enforcing cycle and is evident by EU technologies and industries that have emerged to process "problem plastics", such as mixed plastic film wastes, co-polymer films, thermosets, Polystyrene, (PS) Polyvinyl Chloride (PVC), and others. This is in contrast with NA recycling infrastructure, which has been tailored to shipping low-value mixed plastic waste abroad. Circularity is far from complete in any jurisdiction as export of plastic to developing countries is an opaque, but often used disposal method in the EU as it is in NA. Proposed restrictions on off-shore shipping and regulations requiring minimum recycled plastic content in new products will potentially increase plastic recycling by increasing both supply and demand for recycled product.


Assuntos
Plásticos , Gerenciamento de Resíduos , Plásticos/química , Europa (Continente) , Polímeros , Poliestirenos , União Europeia , Reciclagem , Gerenciamento de Resíduos/métodos
2.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901931

RESUMO

Although many bacterial lipases and PHA depolymerases have been identified, cloned, and characterized, there is very little information on the potential application of lipases and PHA depolymerases, especially intracellular enzymes, for the degradation of polyester polymers/plastics. We identified genes encoding an intracellular lipase (LIP3), an extracellular lipase (LIP4), and an intracellular PHA depolymerase (PhaZ) in the genome of the bacterium Pseudomonas chlororaphis PA23. We cloned these genes into Escherichia coli and then expressed, purified, and characterized the biochemistry and substrate preferences of the enzymes they encode. Our data suggest that the LIP3, LIP4, and PhaZ enzymes differ significantly in their biochemical and biophysical properties, structural-folding characteristics, and the absence or presence of a lid domain. Despite their different properties, the enzymes exhibited broad substrate specificity and were able to hydrolyze both short- and medium-chain length polyhydroxyalkanoates (PHAs), para-nitrophenyl (pNP) alkanoates, and polylactic acid (PLA). Gel Permeation Chromatography (GPC) analyses of the polymers treated with LIP3, LIP4, and PhaZ revealed significant degradation of both the biodegradable as well as the synthetic polymers poly(ε-caprolactone) (PCL) and polyethylene succinate (PES).


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas chlororaphis , Pseudomonas/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Lipase/metabolismo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas chlororaphis/genética , Especificidade por Substrato
3.
Plants (Basel) ; 11(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807621

RESUMO

As fish farm wastewaters have detectable levels of fish hormones, such as 17ß-estradiol (E2), an understanding of the influence of fish steroids on algal (Scenedesmus quadricauda) and duckweed (Lemna minor) physiology is relevant to the potential use of fishery wastewaters for microalgae and plant biomass production. The study was conducted using three types of media: Bold Basal Medium (BBM), natural fishery wastewater (FWW), and reconstituted fishery wastewater (RFWW) with the nutrient composition adjusted to mimic FWW. During the experiment, the media were aerated and changes in the pH and conductivity of the water were closely monitored. E2 promoted the growth of S. quadricauda and L. minor, with significant accumulation of high-value biomolecules at very low steroid concentrations. However, clear differences in growth performance were observed in both test cultures, S. quadricauda and L. minor, grown in different media, and the most effective hormone concentrations were evidently different for the algae and the plant.

4.
J Environ Manage ; 317: 115416, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653839

RESUMO

Conventional oil spill recovery may cause significant damage to shoreline habitats during the removal of oiled material and from human and equipment interaction. In addition, these methods are costly and can leave a significant amount of residual oil in the environment. Biological remediation strategies may be a less invasive option for recovering oil from sensitive regions, with potential to increase recovery. Floating treatment wetlands are a growing area of interest for biodegradation of oil facilitated by plant-bacterial partnerships. Plants are able to stimulate microbial colonization in the rhizosphere, creating greater opportunity for contaminant interaction and degradation. A literature review analysis revealed thirteen articles researching this topic, and found that floating treatment wetlands have high potential to degrade oil contaminants. In some instances, plants and inoculated bacteria exhibited the highest degradation potential, however, plants alone had higher degradation potential than bacteria alone. Research is needed to explore how floating treatment wetlands perform in field-based trials and under variable environmental conditions.


Assuntos
Poluição por Petróleo , Petróleo , Bactérias/metabolismo , Biodegradação Ambiental , Humanos , Petróleo/metabolismo , Poluição por Petróleo/análise , Rizosfera , Áreas Alagadas
5.
Front Bioeng Biotechnol ; 10: 854298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35519608

RESUMO

The outstanding metabolic and bioprotective properties of the bacterial genus Pseudomonas make these species a potentially interesting source for the search of hydrolytic activities that could be useful for the degradation of plastics. We identified two genes encoding the intracellular lipases LIP1 and LIP2 of the biocontrol bacterium Pseudomonas chlororaphis PA23 and subsequently performed cloning and expression in Escherichia coli. The lip1 gene has an open reading frame of 828 bp and encodes a protein of 29.7 kDa whereas the lip2 consists of 834 bp and has a protein of 30.2 kDa. Although secondary structure analyses of LIP1 and LIP2 indicate a dominant α/ß-hydrolase-fold, the two proteins differ widely in their amino acid sequences (15.39% identity), substrate specificities, and hydrolysis rates. Homology modeling indicates the catalytic serine in both enzymes located in a GXSXG sequence motif (lipase box). However, LIP1 has a catalytic triad of Ser152-His253-Glu221 with a GGX-type oxyanion pocket, whereas LIP2 has Ser138-His249-Asp221 in its active site and a GX-type of oxyanion hole residues. However, LIP1 has a catalytic triad of Ser152-His253-Glu221 with an oxyanion pocket of GGX-type, whereas LIP2 has Ser138-His249-Asp221 in its active site and a GX-type of oxyanion hole residues. Our three-dimensional models of LIP1 and LIP2 complexed with a 3-hydroxyoctanoate dimer revealed the core α/ß hydrolase-type domain with an exposed substrate binding pocket in LIP1 and an active-site capped with a closing lid domain in LIP2. The recombinant LIP1 was optimally active at 45°C and pH 9.0, and the activity improved in the presence of Ca2+. LIP2 exhibited maximum activity at 40°C and pH 8.0, and was unaffected by Ca2+. Despite different properties, the enzymes exhibited broadsubstrate specificity and were able to hydrolyze short chain length and medium chain length polyhydroxyalkanoates (PHAs), polylactic acid (PLA), and para-nitrophenyl (pNP) alkanoates. Gel Permeation Chromatography (GPC) analysis showed a decrease in the molecular weight of the polymers after incubation with LIP1 and LIP2. The enzymes also manifested some polymer-degrading activity on petroleum-based polymers such as poly(ε-caprolactone) (PCL) and polyethylene succinate (PES), suggesting that these enzymes could be useful for biodegradation of synthetic polyester plastics. The study will be the first report of the complete characterization of intracellular lipases from bacterial and/or Pseudomonas species. The lipases, LIP1 and LIP2 are different from other bacterial lipases/esterases in having broad substrate specificity for polyesters.

6.
FEMS Microbiol Lett ; 368(18)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534294

RESUMO

A total of two red oleaginous yeasts, Rhodotorula diobovata and Rhodosporidium babjevae, were investigated for their potential to grow on nitrogen-limited media with sufficient glycerol as carbon source and produce biomass, triacylglycerides (TAGs) and carotenoids. The two yeasts produced equal quantities of biomass by 120 h post-inoculation (h pi), but R. diobovata consumed more glycerol than R. babajavae under the same conditions. The TAG concentrations accumulated by R. diobovata and R. babjevae were greater than 20% dry cell weight (dcw), and the major fatty acid components consisted of palmitic acid, oleic acid and linolenic acid. The highest concentration of total fatty acids in biomass were present during the late of stationary phase were 486.3 mg/g dcw for R. diobovata at 120 h pi, and 243.9 mg/g dcw for R. babjevae at 144 h pi. Both R. diobovata and R. babjevae produced high concentrations of torularhodin, and low amounts of torulene and γ-carotene. Total carotenoid concentrations in R. diobovata biomass were 31.5 mg/g dcw at 120 h pi and 43.1 mg/g dcw at 96 h pi for R. babjevae. The dcw accumulations of carotenoids by R. diobovata and R. babjevae were significantly greater than those reported for other carotenogenic Rhodotorula and Rhodosporidium strains.


Assuntos
Carotenoides , Glicerol , Lipídeos , Rhodotorula , Biomassa , Carbono , Carotenoides/metabolismo , Glicerol/metabolismo , Lipídeos/fisiologia , Nitrogênio/química , Rhodotorula/metabolismo
7.
J Fungi (Basel) ; 7(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924147

RESUMO

Rhodotorula diobovata is an oleaginous and carotenogenic yeast, useful for diverse biotechnological applications. To understand the molecular basis of its potential applications, the genome was sequenced using the Illumina MiSeq and Ion Torrent platforms, assembled by AbySS, and annotated using the JGI annotation pipeline. The genome size, 21.1 MB, was similar to that of the biotechnological "workhorse", R. toruloides. Comparative analyses of the R. diobovata genome sequence with those of other Rhodotorula species, Yarrowia lipolytica, Phaffia rhodozyma, Lipomyces starkeyi, and Sporidiobolus salmonicolor, were conducted, with emphasis on the carotenoid and neutral lipid biosynthesis pathways. Amino acid sequence alignments of key enzymes in the lipid biosynthesis pathway revealed why the activity of malic enzyme and ATP-citrate lyase may be ambiguous in Y. lipolytica and L. starkeyi. Phylogenetic analysis showed a close relationship between R. diobovata and R. graminis WP1. Dot-plot analysis of the coding sequences of the genes crtYB and ME1 corroborated sequence homologies between sequences from R. diobovata and R. graminis. There was, however, nonsequential alignment between crtYB CDS sequences from R. diobovata and those from X. dendrorhous. This research presents the first genome analysis of R. diobovata with a focus on its biotechnological potential as a lipid and carotenoid producer.

8.
J Biotechnol ; 332: 11-19, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33781863

RESUMO

Carotenoids and triacylglycerols from yeasts are important bioproducts that can be utilized for the nutraceutical and biodiesel industries respectively. Rhodotorula diobovata is capable of producing these bioproducts under varied culture conditions. These productions have been linked to the early stationary growth phase and their levels only start to decline at the late stationary phase when carbon becomes limiting. While nitrogen-limitation influences the onset of lipogenesis, continuous synthesis and accumulation of neutral lipids (triacylglycerides) may be dependent on other culture conditions such as aeration. Proteomic analyses were conducted to enhance our understanding of changes in gene product expression under culture conditions with nitrogen-limitation, coupled with insufficient aeration, and revealed a correlation between the upregulation of proteins in the lipolysis pathways and the reduced synthesis of fatty acids at the early stationary phase. Upregulation of glycolytic pathway enzymes suggested that glucose was quickly converted into pyruvate and then acetyl-CoA. However, acetyl-CoA flux favoured carotenoids biosynthesis over fatty acid synthesis, as cells transitioned into the stationary phase. This work provides insights into how culture conditions influence gene product expression levels, pathway utilization, and end-product synthesis patterns.


Assuntos
Rhodotorula , Nitrogênio , Oxigênio , Proteômica , Rhodotorula/genética
9.
FEMS Yeast Res ; 21(2)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571365

RESUMO

Oleaginous yeasts have the ability to store greater than 20% of their mass as neutral lipids, in the form of triacylglycerides. The ATP citrate lyase is thought to play a key role in triacylglyceride synthesis, but the relationship between expression levels of this and other related enzymes is not well understood in the role of total lipid accumulation conferring the oleaginous phenotype. We conducted comparative proteomic analyses with the oleaginous yeast, Yarrowia lipolytica, grown in either nitrogen-sufficient rich media or nitrogen-limited minimal media. Total proteins extracted from cells collected during logarithmic and late stationary growth phases were analyzed by 1D liquid chromatography, followed by mass spectroscopy. The ATP citrate lyase enzyme was expressed at similar concentrations in both conditions, in both logarithmic and stationary phase, but many upstream and downstream enzymes showed drastically different expression levels. In non-lipogenic conditions, several pyruvate enzymes were expressed at higher concentration. These enzymes, especially the pyruvate decarboxylase and pyruvate dehydrogenase, may be regulating carbon flux away from central metabolism and reducing the amount of citrate being produced in the mitochondria. While crucial for the oleaginous phenotype, the constitutively expressed ATP citrate lyase appears to cleave citrate in response to carbon flux upstream from other enzymes creating the oleaginous phenotype.


Assuntos
Expressão Gênica , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Nitrogênio/metabolismo , Proteoma/genética , Yarrowia/genética , Yarrowia/metabolismo , Simulação por Computador , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteoma/análise , Proteômica/métodos , Yarrowia/química
10.
Appl Biochem Biotechnol ; 193(5): 1558-1573, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33484448

RESUMO

Biological hydrogen (H2) is a promising candidate for production of renewable hydrogen. Using entrapped cells rather than conventional suspended cell cultures for the production of H2 offers several advantages, such as improved production yields related to higher cell density, and enhanced resistance to substrate and end-product inhibition. In this study, H2 production by a novel isolate of Clostridium intestinale (strain URNW) was evaluated using cells entrapped within 2% calcium-alginate beads under strictly anaerobic conditions. Both immobilized cells and suspended cultures were studied in sequential batch-mode anaerobic fermentation over 192 h. The production of H2 in the headspace was examined for four different initial cellobiose concentrations (5, 10, 20, and 40 mM). Although a lag period for initiation of the fermentation process was observed for bacteria entrapped within hydrogel beads, the immobilized cells achieved both higher volumetric production rates (mmol H2/(L culture h)) and molar yields (mol H2/mol glucose equivalent) of H2 compared with suspended cultures. In the current study, the maximum cellobiose consumption rate of 0.40 mM/h, corresponding to 133.3 mg/(L h), was achieved after 72 h of fermentation by immobilized cells, generating a high hydrogen yield of 3.57 mol H2/mol cellobiose, whereas suspended cultures only yielded 1.77 mol H2/mol cellobiose. The results suggest that cells remain viable within the hydrogels and proliferated with a slow rate over the course of fermentation. The stable productivity of immobilized cells over 8 days with four changes of medium depicted that the immobilized cells of the isolated strain can successfully yield higher hydrogen and lower soluble metabolites than suspended cells suggesting a feasible process for future applications for bioH2 production.


Assuntos
Clostridium/metabolismo , Hidrogênio/química , Alginatos/metabolismo , Celobiose/metabolismo , Fermentação/fisiologia , Hidrogéis/química
12.
Can J Microbiol ; 67(3): 249-258, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33306436

RESUMO

Three bacterial species isolated from whole body extracts of the greater wax moth larvae, Galleria mellonella, were evaluated for their ability to utilize low-density polyethylene (LDPE) as a sole carbon source in vitro. These bacteria were identified as Lysinibacillus fusiformis, Bacillus aryabhattai, and Microbacterium oxydans. Their ability to biodegrade LDPE was assessed by growth curves, cell biomass production, polyethylene (PE) weight loss, and the presence of LDPE hydrolysis products in the growth media. Consortia of these bacteria with three other bacteria previously shown to degrade LDPE (Cupriavidus necator H16, Pseudomonas putida LS46, and Pseudomonas putida IRN22) were also tested. Growth curves of the bacteria utilizing LDPE as a sole carbon source revealed a peak in cell density after 24 h. Cell densities declined by 48 h but slowly increased again to different extents, depending on the bacteria. Incubation of LDPE with bacteria isolated from greater wax moth larvae had significant effects on bacterial cell mass production and weight loss of LDPE in PE-containing media. The bacterial consortia were better able to degrade LDPE than were the individual species alone. Gas chromatographic analyses revealed the presence of linear alkanes and other unknown putative LDPE hydrolysis products in some of bacterial culture media.


Assuntos
Bactérias/metabolismo , Consórcios Microbianos , Mariposas/microbiologia , Polietileno/metabolismo , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodegradação Ambiental , Hidrólise , Larva/microbiologia
13.
Front Bioeng Biotechnol ; 8: 604838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363133

RESUMO

In order to effectively use microbial-based strategies to manage anaerobic digesters, it is necessary to distinguish between community shifts that are part of the natural dynamic of the system and shifts caused by environmental or operational disturbances. The objective of this research study was to evaluate the significance of changes in the microbial community of anaerobic digesters during failure in correlation to operational parameters such as an organic acid overload. Five continuously stirred 0.5 L reactors were set-up as semi-continuously-fed, mesophilic dairy manure digesters with a 30-day hydraulic retention time. After a 120-day stabilization period, two digesters were kept as controls, while the organic loading rates in the triplicate set were increased step-wise to ultimately provide a shock-load leading to failure using propionic acid spikes. Acidosis resulting in near cessation of biogas and termination of methane production occurred between 4 and 7 weeks, after which all the digesters continued to be fed only dairy manure. The shock loading of propionic acid led to an accumulation of mainly acetate and propionate, with low levels of iso-butyrate, butyrate, iso-valerate, and valerate. High-throughput Illumina sequencing of the V4 region of the bacterial and archaeal 16S rRNA gene in digester samples showed a significant change in the microbial community composition during propionic acid overload, followed by a return to the original composition with regular feedstock. Bacterial genera whose relative abundance decreased during the inhibition stage included Sedimentibacter, Syntrophomonas, TSCOR003.O20, and Marinilabiaceae, while the relative abundance of Lachnospiraceae, Ruminococcus, Mogibacteriaceae, Pyramidobacter, and Bacteroides increased. The relative abundance of dominant methanogens, Methanosarcina and Methanobacterium, although initially resistant, were decreased (from 91.71 to 12.14% and from 2.98 to 0.73%, respectively) during inhibition, while Methanobrevibacter and Methanosphaera that were prominent in the manure feedstock increased from 17.36 to 79.45% and from 0.14 to 1.12%, respectively. Shifts in bacterial and archaeal compositions, back to their pre-shock steady state after failure, highlight the digester's microbial resilience and recovery potential.

14.
Front Microbiol ; 11: 580709, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324366

RESUMO

Synthetic plastics are pivotal in our current lifestyle and therefore, its accumulation is a major concern for environment and human health. Petroleum-derived (petro-)polymers such as polyethylene (PE), polyethylene terephthalate (PET), polyurethane (PU), polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC) are extremely recalcitrant to natural biodegradation pathways. Some microorganisms with the ability to degrade petro-polymers under in vitro conditions have been isolated and characterized. In some cases, the enzymes expressed by these microbes have been cloned and sequenced. The rate of polymer biodegradation depends on several factors including chemical structures, molecular weights, and degrees of crystallinity. Polymers are large molecules having both regular crystals (crystalline region) and irregular groups (amorphous region), where the latter provides polymers with flexibility. Highly crystalline polymers like polyethylene (95%), are rigid with a low capacity to resist impacts. PET-based plastics possess a high degree of crystallinity (30-50%), which is one of the principal reasons for their low rate of microbial degradation, which is projected to take more than 50 years for complete degraded in the natural environment, and hundreds of years if discarded into the oceans, due to their lower temperature and oxygen availability. The enzymatic degradation occurs in two stages: adsorption of enzymes on the polymer surface, followed by hydro-peroxidation/hydrolysis of the bonds. The sources of plastic-degrading enzymes can be found in microorganisms from various environments as well as digestive intestine of some invertebrates. Microbial and enzymatic degradation of waste petro-plastics is a promising strategy for depolymerization of waste petro-plastics into polymer monomers for recycling, or to covert waste plastics into higher value bioproducts, such as biodegradable polymers via mineralization. The objective of this review is to outline the advances made in the microbial degradation of synthetic plastics and, overview the enzymes involved in biodegradation.

15.
Bioresour Technol ; 315: 123889, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32717520

RESUMO

The effect of mesophilic anaerobic digestion (AD) on the resistome profile of manures from two different dairy farms was evaluated using a metagenomic approach. A total of 187 unique Antibiotic resistance genes (ARGs) for 17 different classes of antibiotics were detected in raw (undigested) manures. The results indicate that regardless of the origin of the dairy manure, mesophilic AD was capable of reducing or enriching the relative abundance of some ARGs. The main driver of these changes was strongly correlated with the evolution of the microbial community during the AD process. Putative ARG hosts were suggested by analyses of the co-occurrence of microbial groups and ARGs. Finally, network analyses revealed that mesophilic AD could also reduce the co-occurrence of different groups of ARGs potentially located in the same genetic elements. Our results provide valuable insights into the microbial mechanisms driving the diversity and abundance of ARGs during mesophilic AD.


Assuntos
Esterco , Microbiota/efeitos dos fármacos , Anaerobiose , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Genes Bacterianos
16.
Environ Sci Pollut Res Int ; 27(29): 36203-36214, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32557076

RESUMO

A new Pseudomonas putida strain (AQ8) was isolated from a decommissioned oil refinery's soil in Italy and characterized for its ability to degrade BTEX. The draft genome of the new strain was sequenced and annotated for genes that encode enzymes putatively involved in BTEX degradation and quorum sensing. The strain was transformed with a plasmid expressing lactonase, which cleaves the autoinducer quorum sensing signal molecule, the acyl-homoserine lactone, to obtain a quorum sensing minus strain. P. putida AQ8 depleted the 40% on average of all the components of the initial BTEX concentration in 36 h. The quorum sensing minus strain, in the same time interval, depleted only the 10% of the initial BTEX concentration. The role of quorum sensing in regulating the expression of the annotated benzene/toluene dioxygenase gene (benzA) and biphenyl/toluene/benzene dioxygenase (bphA) genes, which are involved in BTEX degradation, was studied by quantitative RT-real-time quantitative (q)PCR analysis. The qPCR data showed decreased levels of expression of the benzA and bphA genes in the quorum sensing minus strain. Our results showed, for the first time, quorum sensing modulation of the level of transcription of dioxygenase genes in the upper BTEX oxidation pathway.


Assuntos
Pseudomonas putida , Benzeno , Itália , Estresse Oxidativo , Percepção de Quorum
17.
Polymers (Basel) ; 12(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948075

RESUMO

Polyethylene (PE) is the most abundant synthetic, petroleum-based plastic materials produced globally, and one of the most resistant to biodegradation, resulting in massive accumulation in the environment. Although the microbial degradation of polyethylene has been reported, complete biodegradation of polyethylene has not been achieved, and rapid degradation of polyethylene under ambient conditions in the environment is still not feasible. Experiments reported in the literature suffer from a number of limitations, and conclusive evidence for the complete biodegradation of polyethylene by microorganisms has been elusive. These limitations include the lack of a working definition for the biodegradation of polyethylene that can lead to testable hypotheses, a non-uniform description of experimental conditions used, and variations in the type(s) of polyethylene used, leading to a profound limitation in our understanding of the processes and mechanisms involved in the microbial degradation of polyethylene. The objective of this review is to outline the challenges in polyethylene degradation experiments and clarify the parameters required to achieve polyethylene biodegradation. This review emphasizes the necessity of developing a biochemically-based definition for the biodegradation of polyethylene (and other synthetic plastics) to simplify the comparison of results of experiments focused for the microbial degradation of polyethylene.

18.
Bioresour Technol ; 301: 122729, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31931335

RESUMO

The effect of ceftiofur (CEF), a commonly used antibiotics on dairy farms, on the performance and stability of mesophilic batch anaerobic digestion (AD) of dairy manure was evaluated in terms of methane production, organic matter removal (COD, dCOD, TS, and VS), and synthesis of end-products (VFAs, CO2, and H2). The results indicated that only CEF concentrations of 10 mg/L or higher significantly affected the performance of the AD process, although the overall stability was not compromised. Biochemical analyses suggested that hydrolytic microorganisms were the most affected by the presence of CEF leading to lower COD removal, whereas acetogens were only temporarily slowed down. Methanogens, on the other hand, were not directly affected by any of the CEF concentrations tested (0.2-250 mg/L). Additionally, the presence of CEF was shown to alter the incidence of the cephalosporin-resistance marker, cmy-2, although an overall reduction was achieved in 15-day batch anaerobic digestion trials.


Assuntos
Biocombustíveis , Esterco , Anaerobiose , Reatores Biológicos , Cefalosporinas , Metano
19.
Front Bioeng Biotechnol ; 8: 617489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553122

RESUMO

Medium chain-length polyhydroxyalkanoates (mcl-PHA) were produced by Pseudomonas putida LS46 cultured with a variety of carbohydrate and fatty acid substrates. The monomer compositions and molecular weights of the polymers varied greatly and was dependent on whether the substrate was metabolized via the fatty acid degradation or the de novo fatty acid synthesis pathways. The highest molecular weights were obtained from medium chain-length fatty acids, whereas low molecular weights were obtained from longer chain-length and more unsaturated fatty acids or carbohydrates. The differences in monomer compositions and molecular weights due to the choice of substrate did not affect the polymer thermal degradation point. The glass transition temperatures varied from -39.4°C to -52.7°C. The melting points, when observed, ranged from 43.2°C to 51.2°C. However, a profound substrate effect was observed on the crystallinity of these polymers. Reduced crystallinity was observed when the monomer compositions deviated away from C8-C10 monomer lengths. The highest crystallinity was observed from medium chain-length fatty acids, which resulted in polymers with the highest tensile strength. The polymer produced from octanoic acid exhibited the highest tensile strength of 4.3 MPa with an elongation-at-break of 162%, whereas the polymers produced from unsaturated, long-chain fatty acids remained amorphous. A comparative analysis of the substrate effect on the physical-mechanical and thermal properties of mcl-PHAs better clarifies the relationship between the monomer composition and their potential applications, and also aids to direct future PHA synthesis research toward properties of interest.

20.
J Biomater Sci Polym Ed ; 31(3): 394-406, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31722618

RESUMO

Bacterial infections are a serious issue in wound healing. Extensive use of biocides in wound dressings have raised concerns of biocide resistance and unnecessary harm to normal skin cells. In this paper, we report a new approach to realize bacteria-triggered release of a biocide to the sites of bacterial infections from core-shell polyhydroxyalkanoate (PHA)-based nanofibers prepared by coaxial electrospinning. The hydrophobic PHA-based shell can prevent the biocide from undesirable payload release in physiological environments without pathogens. However, in the presence of pathogens, the PHA-based shell is degraded by the pathogens, and the encapsulated biocide is released. The released biocide subsequently can exert targeted antimicrobial effects on the bacteria. Using Pseudomonas aeruginosa as a model bacterium and dodecyltrimethylammonium chloride as a model biocide, we demonstrated that the core-shell PHA-based nanofibers effectively released encapsulated dodecyltrimethylammonium chloride in the presence of Pseudomonas aeruginosa, resulting in targeted inactivation of Pseudomonas aeruginosa cells.HighlightsUnique core-shell nanofibers were successfully fabricated from PHAs generated by bacteria.An on-demand release of biocide was achieved from a PHA-based core-shell nanofibours membrane.The membrane's mechanical properties closely match those of the human skin.


Assuntos
Bandagens/microbiologia , Desinfetantes/química , Desinfetantes/farmacologia , Liberação Controlada de Fármacos , Nanofibras/química , Poli-Hidroxialcanoatos/química , Cicatrização , Eletricidade , Cinética , Fenômenos Mecânicos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...