Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Environ Adv ; 152024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38405619

RESUMO

BACKGROUND: Seasonal patterns in measured exposure biomarkers can cause measurement error in epidemiological studies. There is little research about the seasonality of metals and trace elements when assessed in toenail samples. Adjusting for such patterns in models for estimating associations between long-term exposures and health outcomes can potentially improve precision and reduce bias. OBJECTIVES: Assess and describe seasonal patterns in toenail measurements of trace elements. METHODS: The Sister Study enrolled women residing in the US, including Puerto Rico, whose sister had been diagnosed with breast cancer. At the time of enrollment, participants removed nail polish and collected their toenail clippings, which were cleaned before analysis. We considered the following elements: iron, vanadium, aluminum, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, tin, antimony, mercury, and lead. For two subsamples of the cohort, we fit trigonometric regression models with toenail element measures as the outcome, using sine and cosine functions of the collection day (transformed to an angle) to capture seasonal patterns. These models can estimate the amplitude and timing of the peaks in measures. We evaluated the evidence for a seasonal effect by comparing for each measured element the trigonometric model to a model that was constant across time. RESULTS: There was a seasonal trend in toenail element concentration for iron, aluminum, vanadium, chromium, manganese, cobalt, arsenic, molybdenum, cadmium, tin, and lead, all of which peaked near mid-August. Seasonal patterns were concordant across two non-overlapping samples of women, analyzed in different labs. DISCUSSION: Given the evidence supporting seasonal patterns for 11 of the 17 elements measured in toenails, correcting for seasonality of toenail levels of those trace elements in models estimating the association between those exposures and health outcomes is important. The basis for higher concentrations in toenails collected during the summer remains unknown.

2.
Sci Rep ; 14(1): 1682, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242893

RESUMO

Iron status is often assessed in epidemiologic studies, and toenails offer a convenient alternative to serum because of ease of collection, transport, and storage, and the potential to reflect a longer exposure window. Very few studies have examined the correlation between serum and toenail levels for trace metals. Our aim was to compare iron measures using serum and toenails on both a cross-sectional and longitudinal basis. Using a subset of the US-wide prospective Sister Study cohort, we compared toenail iron measures to serum concentrations for iron, ferritin and percent transferrin saturation. Among 146 women who donated both blood and toenails at baseline, a subsample (59%, n = 86) provided specimens about 8 years later. Cross-sectional analyses included nonparametric Spearman's rank correlations between toenail and serum biomarker levels. We assessed within-woman maintenance of rank across time for the toenail and serum measures and fit mixed effects models to measure change across time in relation to change in menopause status. Spearman correlations at baseline (follow-up) were 0.08 (0.09) for serum iron, 0.08 (0.07) for transferrin saturation, and - 0.09 (- 0.17) for ferritin. The within-woman Spearman correlation for toenail iron between the two time points was higher (0.47, 95% CI 0.30, 0.64) than for serum iron (0.30, 95% CI 0.09, 0.51) and transferrin saturation (0.34, 95% CI 0.15, 0.54), but lower than that for ferritin (0.58, 95% CI 0.43, 0.73). Serum ferritin increased over time while nail iron decreased over time for women who experienced menopause during the 8-years interval. Based on cross-sectional and repeated assessments, our evidence does not support an association between serum biomarkers and toenail iron levels. Toenail iron concentrations did appear to be moderately stable over time but cannot be taken as a proxy for serum iron biomarkers and they may reflect physiologically distinct fates for iron.


Assuntos
Ferro , Unhas , Humanos , Feminino , Ferro/metabolismo , Unhas/metabolismo , Seguimentos , Estudos Prospectivos , Pós-Menopausa , Estudos Transversais , Ferritinas , Biomarcadores , Transferrinas , Transferrina
3.
Toxicology ; 499: 153641, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37806615

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are man-made long-lasting chemical compounds that are found in everyday household items. Today they occur in the environment as a major group of pollutants. These compounds are broadly used in commercial product preparation such as, for food packaging, nonstick coatings, and firefighting foam. In humans, PFAS can cause immune disorders, impaired fetal development, abnormal skeletal tissue development, osteoarthritis, thyroid dysfunctions, cholesterol changes, affect insulin regulation and lipid metabolism, and are also involved in the development of fatty liver disease. In the current study, we investigated the effect of low, but physiologically relevant, concentrations of perfluorooctanoic acid (PFOA), heptafluorobutyric acid (HFBA), and perfluorotetradecanoic acid (PFTA) on gene expression markers of an inflammatory response (tnfa, il-1b, il-6, rplp0, edem1, and dnajc3a), unfolded protein response (UPR) (bip, atf4a, atf6, xbp1, and ddit3), senescence (p21, pai1, smp30, mdm2, and baxa), lipogenesis (scd1, acc, srebp1, pparγ, and fasn) and autophagy (p62, atg3, atg7, rab7, lc3b, and becn1) in AB wild-type (+/+), spns1-wt sibling (+/+), (+/-) and spns1 homozygous mutant (-/-) zebrafish embryos. Exposure to PFOA and HFBA (50 and 100 nM) specifically modulated inflammatory, UPR, senescence, lipogenic, and autophagy signaling in spns1-wt (+/+), (+/-), and spns1-mutant (-/-) zebrafish embryos. Furthermore, PFOA, but not HFBA, upregulated lipogenic-related gene expression and enhanced hepatic steatosis in spns1-wt (+/+), (+/-) zebrafish embryos. Combined exposure to PFOA, HFBA, and PFTA differentially expressed inflammatory, senescence, lipogenic, and autophagy-associated gene expression in spns1-mutant (-/-) zebrafish embryos compared with spns1-wt (+/+), (+/-) and AB-wt (+/+) zebrafish embryos. In addition, chronic exposure (∼2 months) to PFOA (120-600 nM) upregulated the expression of hepatic lipogenic and steatosis biomarkers in AB-wt (+/+) zebrafish. Collectively, our data suggest that acute/chronic physiologically relevant concentrations of PFOA upregulate inflammatory, UPR, senescence, and lipogenic signaling in spns1-wt (+/+), (+/-) and spns1-mutant (-/-) zebrafish embryos as well as in two-month-old AB-wt zebrafish, by targeting autophagy and hence induces toxicity that could promote nonalcoholic fatty liver disease.


Assuntos
Fluorocarbonos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Lactente , Peixe-Zebra , Fluorocarbonos/toxicidade
4.
J Air Waste Manag Assoc ; 73(10): 730-736, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37610309

RESUMO

Particulate matter (PM) concentrations have decreased dramatically over the past 20 years, thus lower method detection limits (MDL) are required for these measurements. Energy-dispersive X-ray fluorescence (XRF) spectroscopy is used to quantify multiple elements simultaneously in the U.S. Environmental Protection Agency (EPA) Chemical Speciation Network (CSN). Inductively-coupled plasma mass spectrometry (ICP-MS) is an alternative analysis with lower MDL for elements. Here, we present a side-by-side comparison of XRF and ICP-MS for elements in PM2.5 samples collected via the EPA's CSN. For ICP-MS, a simple extraction and ICP-MS analysis technique was applied to a wide variety of samples to minimize effort and cost and serve as a feasibility test for a large monitoring network. Filter samples (N = 549) from various urban locations across the US were analyzed first analyzed via XRF at UC Davis and then ICP-MS at RTI International. Both methods measured 29 of the same elements out of the 33 usually reported to CSN. Of these 29, 14 elements (Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb) were found to be frequently detected (i.e. had more than 10% of values above both XRF and ICP-MS MDL). ICP-MS was found to have lower MDL for 26 out of 29 elements, namely Na, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, As, Se, Rb, Sr, Zr, Ag, Cd, In, Sn, Sb, Cs, Ba, Ce, Pb; conversely, XRF had lower MDL for 3 elements, namely, P, K, Zn. Intra-method quality checks using (1) inter-elemental inspection of scatter plots using a priori knowledge of element sources and (2) scatter plots of routine versus collocated measurements reveal that ICP-MS exhibits better measurement precision. Lower detection limits for element measurements in nationwide PM monitoring networks would benefit human-health and source apportionment research.Implications: We demonstrate that ICP-MS with adilute-acid digestion method would significantly improve the element detection rates and thus be avaluable addition to the current analysis techniques for airborne PM samples in anationwide monitoring network. In this paper, we show that a hybrid method of elemental analysis for airborne particulate matter (PM) would significantly improve the detection rates for elements in PM. This would be a valuable addition to the current analysis techniques for airborne PM samples in nationwide and other large-scale monitoring networks, such as the EPA's Chemical Speciation Network (CSN). The techniques explored in this study (i.e., X-ray Fluorescence Spectroscopy or XRF and Inductively Coupled Plasma-Mass Spectrometry or ICP-MS) are relevant to the PM monitoring and regulatory community audience of JAWMA, especially agencies and states that are already involved in CSN. In addition, our results outline considerations that give insight on factors to consider for other large-scale and long-term ambient air monitoring efforts.


Assuntos
Chumbo , Material Particulado , Estados Unidos , Humanos , United States Environmental Protection Agency
5.
Toxins (Basel) ; 15(7)2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37505679

RESUMO

Freshwater prokaryotic cyanobacteria within harmful algal blooms produce cyanotoxins which are considered major pollutants in the aquatic system. Direct exposure to cyanotoxins through inhalation, skin contact, or ingestion of contaminated drinking water can target the liver and may cause hepatotoxicity. In the current study, we investigated the effect of low concentrations of cyanotoxins on cytotoxicity, inflammation, modulation of unfolded protein response (UPR), steatosis, and fibrosis signaling in human hepatocytes and liver cell models. Exposure to low concentrations of microcystin-LR (MC-LR), microcystin-RR (MC-RR), nodularin (NOD), and cylindrospermopsin (CYN) in human bipotent progenitor cell line HepaRG and hepatocellular carcinoma (HCC) cell lines HepG2 and SK-Hep1 resulted in increased cell toxicity. MC-LR, NOD, and CYN differentially regulated inflammatory signaling, activated UPR signaling and lipogenic gene expression, and induced cellular steatosis and fibrotic signaling in HCC cells. MC-LR, NOD, and CYN also regulated AKT/mTOR signaling and inhibited autophagy. Chronic exposure to MC-LR, NOD, and CYN upregulated the expression of lipogenic and fibrosis biomarkers. Moreover, RNA sequencing (RNA seq) data suggested that exposure of human hepatocytes, HepaRG, and HCC HepG2 cells to MC-LR and CYN modulated expression levels of several genes that regulate non-alcoholic fatty liver disease (NAFLD). Our data suggest that low concentrations of cyanotoxins can cause hepatotoxicity and cell steatosis and promote NAFLD progression.


Assuntos
Toxinas Bacterianas , Carcinoma Hepatocelular , Doença Hepática Induzida por Substâncias e Drogas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Toxinas Bacterianas/toxicidade , Toxinas de Cianobactérias , Microcistinas/toxicidade , Fibrose
6.
Res Sq ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37461592

RESUMO

Seasonal patterns in measured exposure biomarkers can cause measurement error in epidemiological studies. There is little known about the seasonality of trace elements when measured in toenails. Adjusting for such patterns when estimating associations between long-term exposures and health outcomes could be needed to improve precision and reduce bias. Our goal was to assess seasonal patterns in toenail measurements of trace elements. At enrollment, Sister Study participants, who were US residents, removed polish and collected toenail clippings, which were cleaned before analysis. We measured: iron, vanadium, aluminum, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, tin, antimony, mercury, and lead. For a sample of the cohort we fit trigonometric regression models with toenail element measures as the outcome, using sine and cosine functions of the collection day of the year (transformed to an angle) to assess seasonality. Results were replicated in a second sample of women, with measurements done in a separate lab. There was a seasonal association between day of collection and toenail measures for iron, aluminum, vanadium, chromium, manganese, cobalt, arsenic, molybdenum, cadmium, tin, and lead, all of which peaked near mid-August. Seasonal patterns were concordant across the two samples of women. Given the evidence supporting seasonal patterns for 11 of the 17 elements measured in toenails, correcting for seasonality of toenail levels of those trace elements in models estimating the association between those exposures and health outcomes is important. The basis for higher concentrations in toenails collected during the summer remains unknown.

7.
Toxicol Rep ; 10: 621-632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250531

RESUMO

Thallium is a heavy metal that is known to induce a broad spectrum of adverse health effects in humans including alopecia, neurotoxicity, and mortality following high dose acute poisoning events. Widespread human exposure to thallium may occur via consumption of contaminated drinking water; limited toxicity data are available to evaluate the corresponding public health risk. To address this data gap, the Division of Translational Toxicology conducted short-term toxicity studies of a monovalent thallium salt, thallium (I) sulfate. Thallium (I) sulfate was administered via dosed drinking water to time-mated Sprague Dawley (Hsd:Sprague Dawley® SD®) rats (F0 dams) and their offspring (F1) from gestation day (GD) 6 until up to postnatal day (PND) 28 at concentrations of 0, 3.13, 6.25, 12.5, 25, or 50 mg/L, and adult male and female B6C3F1/N mice for up to 2 weeks at concentrations of 0, 6.25, 12.5, 25, 50, or 100 mg/L. Rat dams in the 50 mg/L exposure group were removed during gestation, and dams and offspring in the 25 mg/L exposure group were removed on or before PND 0 due to overt toxicity. Exposure to thallium (I) sulfate at concentrations ≤ 12.5 mg/L did not impact F0 dam body weights, maintenance of pregnancy, littering parameters, or F1 survival (PND 4-28). However, in F1 pups, exposure to 12.5 mg/L thallium (I) sulfate resulted in decreased body weight gains relative to control rats and onset of whole-body alopecia. Measurement of thallium concentrations in dam plasma, amniotic fluid, fetuses (GD 18), and pup plasma (PND 4) indicated marked maternal transfer of thallium to offspring during gestation and lactation. Mice exposed to 100 mg/L thallium (I) sulfate were removed early due to overt toxicity, and mice exposed to ≥ 25 mg/L exhibited exposure concentration-related decreases in body weight. Lowest-observed-effect levels of 12.5 mg/L (rats) and 25 mg/L (mice) were determined based on the increased incidence of clinical signs of alopecia in F1 rat pups and significantly decreased body weights for both rats and mice.

8.
Environ Sci Technol ; 57(46): 17959-17970, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36932953

RESUMO

Tap water lead testing programs in the U.S. need improved methods for identifying high-risk facilities to optimize limited resources. In this study, machine-learned Bayesian network (BN) models were used to predict building-wide water lead risk in over 4,000 child care facilities in North Carolina according to maximum and 90th percentile lead levels from water lead concentrations at 22,943 taps. The performance of the BN models was compared to common alternative risk factors, or heuristics, used to inform water lead testing programs among child care facilities including building age, water source, and Head Start program status. The BN models identified a range of variables associated with building-wide water lead, with facilities that serve low-income families, rely on groundwater, and have more taps exhibiting greater risk. Models predicting the probability of a single tap exceeding each target concentration performed better than models predicting facilities with clustered high-risk taps. The BN models' Fß-scores outperformed each of the alternative heuristics by 118-213%. This represents up to a 60% increase in the number of high-risk facilities that could be identified and up to a 49% decrease in the number of samples that would need to be collected by using BN model-informed sampling compared to using simple heuristics. Overall, this study demonstrates the value of machine-learning approaches for identifying high water lead risk that could improve lead testing programs nationwide.


Assuntos
Água Potável , Chumbo , Humanos , Criança , Chumbo/análise , Teorema de Bayes , Cuidado da Criança , Água , Tomada de Decisões
10.
Environ Toxicol ; 38(4): 783-797, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602393

RESUMO

Cadmium (Cd) is an environmental pollutant that increases hepatotoxicity and the risk of liver diseases. In the current study, we investigated the effect of a physiologically relevant, low concentration of Cd on the regulation of liver cancer cell proliferation, steatosis, and fibrogenic/oncogenic signaling. Exposure to low concentrations of Cd increased endogenous reactive oxygen species (ROS) production and enhanced cell proliferation in a human bipotent progenitor cell line HepaRG and hepatocellular carcinoma (HCC) cell lines. Acute exposure of Cd increased Jagged-1 expression and activated Notch signaling in HepaRG and HCC cells HepG2 and SK-Hep1. Cd activated AKT/mTOR signaling by increasing phosphorylation of AKT-S473 and mTOR-S-4448 residues. Moreover, a low concentration of Cd also promoted cell steatosis and induced fibrogenic signaling in HCC cells. Chronic exposure to low concentrations of Cd-activated Notch and AKT/mTOR signaling induced the expression of pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα) and its downstream target TNF-α-Induced Protein 8 (TNFAIP8). RNA-Seq data revealed that chronic exposure to low concentrations of Cd modulated the expression of several fatty liver disease-related genes involved in cell steatosis/fibrosis in HepaRG and HepG2 cells. Collectively, our data suggest that low concentrations of Cd modulate steatosis along with fibrogenic and oncogenic signaling in HCC cells by activating Notch and AKT/mTOR pathways.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Cádmio/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral
12.
Environ Toxicol ; 38(1): 225-242, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36251517

RESUMO

Per- and polyfluoroalkyl substances (PFAS), which include perfluorooctanoic acid (PFOA), heptafluorobutyric acid (HFBA), and perfluorotetradecanoic acid (PFTA), are commonly occurring organic pollutants. Exposure to PFAS affects the immune system, thyroid and kidney function, lipid metabolism, and insulin signaling and is also involved in the development of fatty liver disease and cancer. The molecular mechanisms by which PFAS cause fatty liver disease are not understood in detail. In the current study, we investigated the effect of low physiologically relevant concentrations of PFOA, HFBA, and PFTA on cell survival, steatosis, and fibrogenic signaling in liver cell models. Exposure of PFOA and HFBA (10 to 1000 nM) specifically promoted cell survival in HepaRG and HepG2 cells. PFAS increased the expression of TNFα and IL6 inflammatory markers, increased endogenous reactive oxygen species (ROS) production, and activated unfolded protein response (UPR). Furthermore, PFAS enhanced cell steatosis and fibrosis in HepaRG and HepG2 cells which were accompanied by upregulation of steatosis (SCD1, ACC, SRBP1, and FASN), and fibrosis (TIMP2, p21, TGFß) biomarkers expression, respectively. RNA-seq data suggested that chronic exposures to PFOA modulated the expression of fatty acid/lipid metabolic genes that are involved in the development of NFALD and fatty liver disease. Collectively our data suggest that acute/chronic physiologically relevant concentrations of PFAS enhance liver cell steatosis and fibrosis by the activation of the UPR pathway and by modulation of NFALD-related gene expression.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Hepatopatia Gordurosa não Alcoólica , Humanos , Fluorocarbonos/toxicidade , Resposta a Proteínas não Dobradas , Poluentes Ambientais/toxicidade , Fibrose
13.
Am J Public Health ; 112(S7): S695-S705, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36179303

RESUMO

Objectives. To evaluate lead levels in tap water at licensed North Carolina child care facilities. Methods. Between July 2020 and October 2021, we enrolled 4005 facilities in a grant-funded, participatory science testing program. We identified risk factors associated with elevated first-draw lead levels using multiple logistic regression analysis. Results. By sample (n = 22 943), 3% of tap water sources exceeded the 10 parts per billion (ppb) North Carolina hazard level, whereas 25% of tap water sources exceeded 1 ppb, the American Academy of Pediatrics' reference level. By facility, at least 1 tap water source exceeded 1 ppb and 10 ppb at 56% and 12% of facilities, respectively. Well water reliance was the largest risk factor, followed by participation in Head Start programs and building age. We observed large variability between tap water sources within the same facility. Conclusions. Tap water in child care facilities is a potential lead exposure source for children. Given variability among tap water sources, it is imperative to test every source used for drinking and cooking so appropriate action can be taken to protect children's health. (Am J Public Health. 2022;112(S7):S695-S705. https://doi.org/10.2105/AJPH.2022.307003).


Assuntos
Água Potável , Chumbo , Criança , Cuidado da Criança , Humanos , Chumbo/análise , North Carolina , Água/análise , Abastecimento de Água
14.
Anal Lett ; 55(8): 1269-1280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571259

RESUMO

Thallium (Tl) can be released as a byproduct of smelting, mining, and other industries, causing human exposure. There are knowledge gaps on the toxicity of thallium compounds, so the National Toxicology Program is investigating the toxicity of thallium (I) sulfate in rodents. We developed and validated a method to quantitate Tl in rodent plasma and secondary matrices. Primary matrix standards and validation samples were digested with nitric acid and analyzed for Tl by inductively-coupled plasma - mass spectrometry (ICP-MS). Method performance was validated for linearity, accuracy, precision, and other criteria. Calibration was linear from 1.25 to 500 ng Tl/mL plasma; accuracy (RE) was -5.9 to 2.6% for all calibration standards. The lower limit of quantitation (LLOQ) was 1.25 ng Tl/mL plasma, and the limit of detection was 0.0370 ng Tl/mL plasma. Intra- and interday RE and precision (RSD) were -5.6 to -1.7% and ≤0.8% (intraday) and -4.8 to -1.3% and ≤4.3% (interday), respectively, at three sample concentration levels. Standards up to 10.0 × 103 ng/mL could be analyzed by dilution with digested blank matrix, with -6.4% RE and 5.4% RSD. Method was also evaluated in post-natal day 4 (PND4) Hsd:Sprague Dawley SD (HSD) dam and pup plasma, gestation day 18 (GD 18) HSD rat fetal homogenate, HSD rat urine, female HSD rat brain homogenate, female B6C3F1 mouse plasma. Background Tl was detected in control fetal and brain homogenates and urine at < 30% of LLOQ response. Results demonstrate that the method is suitable for determination of Tl in rodent matrices for toxicology studies.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35627541

RESUMO

Limited information is available regarding chemical water quality at the tap in Guatemala City, preventing individuals, water utilities, and public health authorities from making data-driven decisions related to water quality. To address this need, 113 participants among households served by a range of water providers across the Guatemala City metropolitan area were recruited as participatory scientists to collect first-draw and flushed tap water samples at their residence. Samples were transported to the U.S. and analyzed for 20 metals and 25 per- and polyfluoroalkyl substances (PFAS). At least one metal exceeded the Guatemalan Maximum Permissible Limit (MPL) for drinking water in 63% of households (n = 71). Arsenic and lead exceeded the MPL in 33.6% (n = 38) and 8.9% (n = 10) of samples, respectively. Arsenic was strongly associated with groundwater while lead occurrence was not associated with location, water source, or provider. One or more PFAS were detected in 19% of samples (n = 21, range 2.1-64.2 ppt). PFAS were significantly associated with the use of plastic water storage tanks but not with location, water source, or provider. Overall, the high prevalence of arsenic above the MPL in Guatemala City tap water represents a potential health risk that current water treatment processes are not optimized to remove. Furthermore, potential contaminants from premise plumbing and storage, including lead and PFAS, represent additional risks requiring further investigation and public engagement.


Assuntos
Arsênio , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Guatemala , Humanos , Metais , Poluentes Químicos da Água/análise
16.
Toxicol Lett ; 360: 53-61, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35331842

RESUMO

Vanadium is a ubiquitous environmental contaminant although there are limited data to assess potential adverse human health impact following oral exposure. In support of studies investigating the subchronic toxicity of vanadyl sulfate (V4+) and sodium metavanadate (V5+) following perinatal exposure via drinking water in male and female rats, we have determined the internal exposure and urinary excretion of total vanadium at the end of study. Water consumption decreased with increasing exposure concentration following exposure to both compounds. Plasma and urine vanadium concentration normalized to total vanadium consumed per day increased with the exposure concentration of vanadyl sulfate and sodium metavanadate suggesting absorption increased as the exposure concentration increased. Additionally, females had higher concentrations than males (in plasma only for vanadyl sulfate exposure). Animals exposed to sodium metavanadate had up to 3-fold higher vanadium concentration in plasma and urine compared to vanadyl sulfate exposed animals, when normalized to total vanadium consumed per day, demonstrating differential absorption, distribution, metabolism, and excretion properties between V5+ and V4+ compounds. These data will aid in the interpretation of animal toxicity data of V4+ and V5+ compounds and determine the relevance of animal toxicity findings to human exposures.


Assuntos
Água Potável , Vanádio , Animais , Feminino , Masculino , Ratos , Sódio , Vanadatos/toxicidade , Vanádio/toxicidade , Vanádio/urina , Compostos de Vanádio
17.
Anal Lett ; 54(17): 2777-2788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34898679

RESUMO

Human exposure to vanadium (V) is anticipated because it is a drinking water contaminant. Due to limited data on soluble V salts, the National Toxicology Program is investigating the toxicity in rodents following drinking water exposure. Measurement of internal V dose allows for interpretation of toxicology data. The objective of this study was to develop and validate an inductively coupled plasma-mass spectrometric method to quantitate total V in rat plasma. The method was linear (r ≥ 0.99) from 5.00 - 1,000 ng V/mL. Intra- and inter-day relative error (% RE) and relative standard deviation (% RSD) of spiked plasma samples were 8.5% - 15.6% RE and ≤ 1.8% RSD and 7.3% - 11.7% RE and ≤ 3.1% RSD, respectively. The limit of detection was 0.268 ng V/mL plasma and absolute percent recovery was 113%. Standards up to 7,500 ng V/mL plasma were diluted into the validated range (5.6% RE, 0.9% RSD). V in extracted plasma samples over 15 days at ambient and refrigerated conditions was from 97.7 - 126% of day 0. Determined plasma V concentrations after three freeze-thaw cycles and after frozen storage for up to 63 days ranged from 100 - 106% and 100 - 122% of day 0, respectively. The method was extended to rat urine (accuracy and precision -2.0 - 0.3% RE and <0.6% RSD, respectively for same linear range). These data demonstrate that the method is suitable to quantitate V in rat plasma and urine.

18.
J Toxicol ; 2021: 9564297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422041

RESUMO

Cadmium (Cd) is a toxic pollutant that is associated with several severe human diseases. Cd can be easily absorbed in significant quantities from air contamination/industrial pollution, cigarette smoke, food, and water and primarily affects the liver, kidney, and lungs. Toxic effects of Cd include hepatotoxicity, nephrotoxicity, pulmonary toxicity, and the development of various human cancers. Cd is also involved in the development and progression of fatty liver diseases and hepatocellular carcinoma. Cd affects liver function via modulation of cell survival/proliferation, differentiation, and apoptosis. Moreover, Cd dysregulates hepatic autophagy, an endogenous catabolic process that detoxifies damaged cell organelles or dysfunctional cytosolic proteins through vacuole-mediated sequestration and lysosomal degradation. In this article, we review recent developments and findings regarding the role of Cd in the modulation of hepatotoxicity, autophagic function, and liver diseases at the molecular level.

19.
Am J Epidemiol ; 190(11): 2360-2373, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34268559

RESUMO

The role of metals in breast cancer is of interest because of their carcinogenic and endocrine-disrupting capabilities. Evidence from epidemiologic studies remains elusive, and prior studies have not investigated metal mixtures. In a case cohort nested within the Sister Study (enrolled in 2003-2009; followed through September 2017), we measured concentrations of 15 metals in toenails collected at enrollment in a race/ethnicity-stratified sample of 1,495 cases and a subcohort of 1,605 women. We estimated hazard ratios and 95% confidence intervals for each metal using Cox regression and robust variance. We used quantile g-computation to estimate the joint association between multiple metals and breast cancer risk. The average duration of follow-up was 7.5 years. There was little evidence supporting an association between individual metals and breast cancer. An exception was molybdenum, which was associated with reduced incidence of overall breast cancer risk (third tertile vs. first tertile: hazard ratio = 0.82, 95% confidence interval: 0.67, 1.00). An inverse association for antimony was observed among non-Hispanic Black women. Predefined groups of metals (all metals, nonessential metals, essential metals, and metalloestrogens) were not strongly associated with breast cancer. This study offers little support for metals, individually or as mixtures, as risk factors for breast cancer. Mechanisms for inverse associations with some metals warrant further study.


Assuntos
Neoplasias da Mama/induzido quimicamente , Carcinoma Intraductal não Infiltrante/induzido quimicamente , Metais/efeitos adversos , Receptores de Estrogênio/metabolismo , Idoso , Neoplasias da Mama/etnologia , Neoplasias da Mama/metabolismo , Carcinoma Intraductal não Infiltrante/etnologia , Carcinoma Intraductal não Infiltrante/metabolismo , Feminino , Humanos , Menopausa , Metais/análise , Pessoa de Meia-Idade , Unhas/química , Estudos Prospectivos , Fatores de Risco , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...