Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Imaging (Bellingham) ; 6(3): 033504, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31528659

RESUMO

Volume-of-interest (VOI) imaging is a strategy in computed tomography (CT) that restricts x-ray fluence to particular anatomical targets via dynamic beam modulation. This permits dose reduction while retaining image quality within the VOI. VOI-CT implementation has been challenged, in part, by a lack of hardware solutions for tailoring the incident fluence to the patient and anatomical site, as well as difficulties involving interior tomography reconstruction of truncated projection data. We propose a general VOI-CT imaging framework using multiple aperture devices (MADs), an emerging beam filtration scheme based on two binary x-ray filters. Location of the VOI is prescribed using two scout views at anterior-posterior (AP) and lateral perspectives. Based on a calibration of achievable fluence field patterns, MAD motion trajectories were designed using an optimization objective that seeks to maximize the relative fluence in the VOI subject to minimum fluence constraints. A modified penalized-likelihood method is developed for reconstruction of heavily truncated data using the full-field scout views to help solve the interior tomography problem. Physical experiments were conducted to show the feasibility of noncentered and elliptical VOI in two applications-spine and lung imaging. Improved dose utilization and retained image quality are validated with respect to standard full-field protocols. We observe that the contrast-to-noise ratio (CNR) is 40% higher compared with low-dose full-field scans at the same dose. The total dose reduction is 50% for equivalent image quality (CNR) within the VOI.

2.
Phys Med Biol ; 64(10): 105024, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30939459

RESUMO

A novel beam filter consisting of multiple aperture devices (MADs) has been developed for dynamic fluence field modulation (FFM) in CT. Each MAD achieves spatial modulation of x-ray through fine-scale, highly attenuating tungsten bars of varying widths and spacings. Moiré patterns produced by relative motions between two MADs provide versatile classes of modulation profiles. The dual-MAD filter can be designed to achieve specific classes of target profiles. The designed filter was manufactured through a laser-sintering process and integrated to an experimental imaging system that enables linear actuation of the MADs. Dynamic FFM was achieved through a combination of beam shape modulation (by relative MAD motion) and amplitude modulation (by view-dependent mAs). To correct for gains associated with the MADs, we developed an algorithm to account for possible focal spot changes during/between scans and spectral effects introduced by the MADs. We performed FFM designs for phantoms following two imaging objectives: (1) to achieve minimum mean variance in filtered backprojection (FBP) reconstruction, and (2) to flatten the fluence behind the phantom. Comparisons with conventional FFM strategies involving a static bowtie and pulse width modulation were performed. The dual-MAD filter produced modulation profiles closely matched with the design target, providing varying beam widths not achievable by the static bowtie. The entire range of modulation profiles was achieved by 0.373 mm of MAD displacement. The correction algorithm effectively alleviated ring artifacts as a result of MADs while preserving phantom details such as wires and tissue boundaries. Dynamic FFM enabled by the MADs were effective in achieving the imaging objectives and demonstrated superior FFM capabilities compared to the static bowtie. In an ellipse phantom, the FFM of objective 1 achieved the lowest mean variance in all cases investigated. The FFM of objective 2 produce nearly isotropic local noise power spectrum and homogeneous noise magnitude. The dual-MAD filter provides an effective tool for fluence control in CT to overcome limitations of conventional static bowties and to further enable patient-specific FFM studies for a wide range of dose and image quality objectives.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Desenho de Equipamento , Humanos , Doses de Radiação
3.
J Med Imaging (Bellingham) ; 5(4): 043501, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30397631

RESUMO

Traditional CT image acquisition uses bowtie filters to reduce dose, x-ray scatter, and detector dynamic range requirements. However, accurate patient centering within the bore of the CT scanner takes time and is often difficult to achieve precisely. Patient miscentering combined with a static bowtie filter can result in significant increases in dose, reconstruction noise, and CT number variations, and consequently raise overall exposure requirements. Approaches to estimate the patient position from scout scans and perform dynamic spatial beam filtration during acquisition are developed and applied in physical experiments on a CT test bench using different beam filtration strategies. While various dynamic beam modulation strategies have been developed, we focus on two approaches: (1) a simple approach using attenuation-based beam modulation using a translating bowtie filter and (2) dynamic beam modulation using multiple aperture devices (MADs)-an emerging beam filtration strategy based on binary filtration of the x-ray beam using variable width slits in a high-density beam blocker. Improved dose utilization and more consistent image performance with respect to an unmodulated baseline (static filter) are demonstrated for miscentered objects and dynamic beam filtration in physical experiments. For a homogeneous object miscentered by 4 cm, the dynamic filter reduced the maximum regional noise and dose penalties (compared with a centered object) from 173% to 16% and 42% to 14%, respectively, for a traditional bowtie, 29% to 8% and 24% to 15%, respectively, for a single MAD, and 275% to 11% and 56% to 18%, respectively, for a dual-MAD filter. The proposed methodology has the potential to relax patient centering requirements within the scanner, reduce setup time, and facilitate additional CT dose reduction.

4.
Proc SPIE Int Soc Opt Eng ; 97832016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-27110052

RESUMO

We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1-1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures.

5.
Artigo em Inglês | MEDLINE | ID: mdl-28361128

RESUMO

A Multiple Aperture Device (MAD) is a novel x-ray beam modulator that uses binary filtration on a fine scale to spatially modulate an x-ray beam. Using two MADs in series enables a large variety of fluence profiles by shifting the MADS relative to each other. This work details the design and control of dual MADs for a specific class of desired fluence patterns. Specifically, models of MAD operation are integrated into a best fit objective followed by CMA-ES optimization. To illustrate this framework we demonstrate the design process for an abdominal phantom with the goal of uniform detected signal. Achievable fluence profiles show good agreement with target fluence profiles, and the ability to flatten projections when a phantom is scanned is demonstrated. Simulated data reconstruction using traditional tube current modulation (TCM) and MAD filtering with TCM are investigated with the dual MAD system demonstrating more uniformity in noise and illustrating the potential for dose reduction under a maximum noise level constraint.

6.
J Clin Neurosci ; 21(9): 1591-4, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24768150

RESUMO

We aimed to determine whether 80 kVp conventional nonenhanced head CT scans have better gray-white matter contrast than standard 120 kVp scans performed on the same patients. Thirty head CT scans acquired at 80 kVp (CT dose index [CTDI]vol 46) were compared to prior studies in the same patients performed at 120 kVp (CTDIvol 59). Signal (Hounsfield units [HU]), noise (sd HU), and contrast-to-noise ratio per dose (CNRD) were assessed in multiple cerebral gray and white matter regions of interest. A noise correction factor was used to compensate for scanning at different CTDIvol values. Average gray matter signal at 80 kVp and 120 kVP was 33.9 ± 3.5 HU and 29 ± 4.6 HU, respectively (p<0.0001); the averages for white matter were 22.5 ± 3.1 HU and 21.6 ± 4.6 HU, respectively (p=0.11). Corrected noise was 3 ± 0.6 and 2.7 ± 0.6, respectively, for gray matter (p=0.0001), and 2.8 ± 0.6 and 2.6 ± 0.5, respectively, for white matter (p=0.00001). The gray-white matter CNRD was 4.0 ± 1.2 at 80 kVp and 2.8 ± 1 at 120 kVp (p<0.00001). Cerebral gray-white matter CNRD is increased by 40% at 80 kVp compared to conventional 120 kVp CT scans. These findings justify further clinical evaluation in the acute stroke setting.


Assuntos
Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Substância Branca/diagnóstico por imagem , Idoso , Carcinoma de Células Renais/diagnóstico por imagem , Feminino , Cabeça/diagnóstico por imagem , Humanos , Masculino , Mieloma Múltiplo/diagnóstico por imagem , Doses de Radiação , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA