Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 531, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782916

RESUMO

We present unprecedented datasets of current and future projected weather files for building simulations in 15 major cities distributed across 10 climate zones worldwide. The datasets include ambient air temperature, relative humidity, atmospheric pressure, direct and diffuse solar irradiance, and wind speed at hourly resolution, which are essential climate elements needed to undertake building simulations. The datasets contain typical and extreme weather years in the EnergyPlus weather file (EPW) format and multiyear projections in comma-separated value (CSV) format for three periods: historical (2001-2020), future mid-term (2041-2060), and future long-term (2081-2100). The datasets were generated from projections of one regional climate model, which were bias-corrected using multiyear observational data for each city. The methodology used makes the datasets among the first to incorporate complex changes in the future climate for the frequency, duration, and magnitude of extreme temperatures. These datasets, created within the IEA EBC Annex 80 "Resilient Cooling for Buildings", are ready to be used for different types of building adaptation and resilience studies to climate change and heatwaves.

2.
Science ; 374(6574): 1504-1509, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34914515

RESUMO

The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.

3.
Environ Sci Technol ; 53(13): 7532-7542, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31125208

RESUMO

Solar reflective cool roofs and walls can be used to mitigate the urban heat island effect. While many past studies have investigated the climate impacts of adopting cool surfaces, few studies have investigated their effects on air pollution, especially on particulate matter (PM). This research for the first time investigates the influence of widespread deployment of cool walls on urban air pollutant concentrations, and systematically compares cool wall to cool roof effects. Simulations using a coupled meteorology-chemistry model (WRF-Chem) for a representative summertime period show that cool walls and roofs can reduce urban air temperatures, wind speeds, and planetary boundary heights in the Los Angeles Basin. Consequently, increasing wall (roof) albedo by 0.80, an upper bound scenario, leads to maximum daily 8-h average ozone concentration reductions of 0.35 (0.83) ppbv in Los Angeles County. However, cool walls (roofs) increase daily average PM2.5 concentrations by 0.62 (0.85) µg m-3. We investigate the competing processes driving changes in concentrations of speciated PM2.5. Increases in primary PM (elemental carbon and primary organic aerosols) concentrations can be attributed to reductions in ventilation of the Los Angeles Basin. Increases in concentrations of semivolatile species (e.g., nitrate) are mainly driven by increases in gas-to-particle conversion due to reduced atmospheric temperatures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Los Angeles , Material Particulado
4.
Environ Sci Technol ; 52(19): 11188-11197, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30157379

RESUMO

This study for the first time assesses the influence of employing solar reflective "cool" walls on the urban energy budget and summertime climate of the Los Angeles basin. We systematically compare the effects of cool walls to cool roofs, a heat mitigation strategy that has been widely studied and employed, using a consistent modeling framework (the Weather Research and Forecasting model). Adoption of cool walls leads to increases in urban grid cell albedo that peak in the early morning and late afternoon, when the ratio of solar radiation onto vertical walls versus horizontal surfaces is at a maximum. In Los Angeles County, daily average increase in grid cell reflected solar radiation from increasing wall albedo by 0.80 is 9.1 W m-2, 43% of that for increasing roof albedo. Cool walls reduce canyon air temperatures in Los Angeles by 0.43 K (daily average), with the peak reduction (0.64 K) occurring at 09:00 LST and a secondary peak (0.53 K) at 18:00 LST. Per 0.10 wall (roof) albedo increase, cool walls (roofs) can reduce summertime daily average canyon air temperature by 0.05 K (0.06 K). Results reported here can be used to inform policies on urban heat island mitigation or climate change adaptation.


Assuntos
Temperatura Baixa , Temperatura Alta , Los Angeles , Temperatura , Tempo (Meteorologia)
5.
Environ Sci Technol ; 49(24): 14672-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26523605

RESUMO

In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo).


Assuntos
Habitação , Ventilação/métodos , China , Cidades , Simulação por Computador , Desenho de Equipamento , Temperatura Alta , Umidade , Estações do Ano , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...