Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 80(4): 647-656, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36216973

RESUMO

The dicentric chromosome assay (DCA), is considered the 'gold standard' for radiation biodosimetry. Yet, DCA, as currently implemented, may be impractical for emergency response applications, especially when time is of the essence, owing to its labor-intensive and time-consuming nature. The growth of a primary lymphocyte culture for 48 h in vitro is required for DCA, and manual scoring of dicentric chromosomes (DCs) requires an additional 24-48 h, resulting in an overall processing time of 72-96 h for dose estimation. In order to improve this timing. we introduce a protocol that will detect the metaphase cells in a population of cells, and then will harvest only those metaphase cells. Our metaphase enrichment approach is based on fixed human lymphocytes incubated with monoclonal, anti-phosphorylated H3 histone (ser 10). Antibodies against this histone have been shown to be specific for mitotic cells. Colcemid is used to arrest the mitotic cells in metaphase. Following that, a flow-cytometric sorting apparatus isolates the mitotic fraction from a large population of cells, in a few minutes. These mitotic cells are then spread onto a slide and treated with our C-Banding procedure [Gonen et al. 2022], to visualize the centromeres with DAPI. This reduces the chemical processing time to ~2 h. This reduces the time required for the DCA and makes it practical for a much wider set of applications, such as emergency response following exposure of a large population to ionizing radiation.


Assuntos
Cromossomos Humanos , Radiometria , Aberrações Cromossômicas , Demecolcina , Relação Dose-Resposta à Radiação , Histonas , Humanos , Linfócitos , Metáfase , Radiometria/métodos
2.
Cell Biochem Biophys ; 80(2): 375-384, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35137344

RESUMO

Many chromosome assays rely on the quantification of chromosome abnormalities in cells, and one important abnormality is the existence of more than one centromere for each chromosome. The quantification of such abnormalities has been studied before. However, this process is labor-intensive and time consuming. Thus, this assay is challenging for ex-laboratory applications, where speed is required. We present a visualization method that uses a cheap stain-DAPI, long (e.g., high-resolution) chromosomes and our modified C-banding method for labeling chromosomes. The labeled chromosomes can then be easily seen with a conventional and readily available fluorescence microscopy system. This method achieves an acceleration of the detection of the presence of constitutive heterochromatin in chromosomal centromeres by more than 10 times, to ~2 h, in Human lymphocyte cells and in cells of the human Jurkat line. This new procedure will ultimately provide an easier and cheaper alternative to FISH/PNA probes, or the classic Giemsa staining method. Simplification and reduction in time of the overall procedure will enable the utilization of centromere-counting assays in laboratory and ex-laboratory applications, including in emergency response.


Assuntos
Centrômero , Indóis , Aberrações Cromossômicas , Bandeamento Cromossômico , Humanos
3.
Micromachines (Basel) ; 11(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545273

RESUMO

Atomization of liquid media is a key aim in various technological disciplines, and solutions that improve spray performance, while decreasing energy consumption, are in great demand. That concept is very important in the development of liquid fuel spray atomizers in high-efficiency microturbines and other generator systems with low inlet pressure and a wide range of power supply. Here we present a study of the liquid atomization characteristics for a new mechanical atomizer that has optimal geometric parameters and a preliminary swirl stage. In our air-assisted atomizer, air is introduced through a swirl chamber positioned at the exit of the mechanical atomizer. The optimized mechanical atomizer alone can achieve D32 drop diameters in the range of 80 to 40 µm at water supply pressures of 2 to 5 bar, respectively. The addition of an air swirl chamber substantially decreases drop sizes. At an air-liquid ratio (ALR) equal to 1, water pressures of 2.5 to 3 bar and air supply pressures 0.35 to 1 bar, D32 drops with diameters of 20-30 µm were obtained. In an air-assisted atomizer the parameters of the mechanical atomizer have a much stronger influence on drop diameters than do characteristics of the air-swirl chamber. Using a mechanical atomizer with optimal geometrical dimensions allows limiting the liquid supply pressure to 5 bar; but when an air-assisted component is introduced we can recommend an ALR ≈ 1 and an air supply pressure of up to 1 bar.

4.
Water Sci Technol ; 58(10): 1955-61, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19039175

RESUMO

Studies of electrostatic repulsion in ultrafiltration membranes are limited to applications of different organic compounds carrying a set of unique characteristics, or to changes of general water parameters such as ionic strength and pH. The proposed method of deliberate alteration of surface charge of organic molecule by succinylation or by guanidination provides an opportunity to selectively investigate the electrostatic mechanism without changing size or hydrophobic properties of investigated molecule. The approach was successfully implemented on BSA protein, and new inside into the mechanism of electrostatic mechanism was obtained. The electrostatic repulsion becomes important when zeta potential of the protein exceeded 20 mV, when before the threshold the interactions were mainly governed by size exclusion.


Assuntos
Membranas Artificiais , Eletricidade Estática , Animais , Bovinos , Guanidina/metabolismo , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Polímeros/química , Soroalbumina Bovina/isolamento & purificação , Soroalbumina Bovina/ultraestrutura , Ácido Succínico/metabolismo , Sulfonas/química , Fatores de Tempo , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...