Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2740, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548733

RESUMO

Photoreceptor proteins utilise chromophores to sense light and trigger a biological response. The discovery that adenosylcobalamin (or coenzyme B12) can act as a light-sensing chromophore heralded a new field of B12-photobiology. Although microbial genome analysis indicates that photoactive B12-binding domains form part of more complex protein architectures, regulating a range of molecular-cellular functions in response to light, experimental evidence is lacking. Here we identify and characterise a sub-family of multi-centre photoreceptors, termed photocobilins, that use B12 and biliverdin (BV) to sense light across the visible spectrum. Crystal structures reveal close juxtaposition of the B12 and BV chromophores, an arrangement that facilitates optical coupling. Light-triggered conversion of the B12 affects quaternary structure, in turn leading to light-activation of associated enzyme domains. The apparent widespread nature of photocobilins implies involvement in light regulation of a wider array of biochemical processes, and thus expands the scope for B12 photobiology. Their characterisation provides inspiration for the design of broad-spectrum optogenetic tools and next generation bio-photocatalysts.


Assuntos
Pigmentos Biliares , Fotorreceptores Microbianos , Fotoquímica , Biliverdina , Proteínas de Bactérias/metabolismo , Fotorreceptores Microbianos/química , Luz
2.
J Am Chem Soc ; 145(40): 22041-22046, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782882

RESUMO

Novel building blocks are in constant demand during the search for innovative bioactive small molecule therapeutics by enabling the construction of structure-activity-property-toxicology relationships. Complex chiral molecules containing multiple stereocenters are an important component in compound library expansion but can be difficult to access by traditional organic synthesis. Herein, we report a biocatalytic process to access a specific diastereomer of a chiral amine building block used in drug discovery. A reductive aminase (RedAm) was engineered following a structure-guided mutagenesis strategy to produce the desired isomer. The engineered RedAm (IR-09 W204R) was able to generate the (S,S,S)-isomer 3 in 45% conversion and 95% ee from the racemic ketone 2. Subsequent palladium-catalyzed deallylation of 3 yielded the target primary amine 4 in a 73% yield. This engineered biocatalyst was used at preparative scale and represents a potential starting point for further engineering and process development.


Assuntos
Aminas , Desenho de Fármacos , Biocatálise , Estereoisomerismo
3.
Nat Commun ; 14(1): 5082, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604813

RESUMO

CarH is a coenzyme B12-dependent photoreceptor involved in regulating carotenoid biosynthesis. How light-triggered cleavage of the B12 Co-C bond culminates in CarH tetramer dissociation to initiate transcription remains unclear. Here, a series of crystal structures of the CarH B12-binding domain after illumination suggest formation of unforeseen intermediate states prior to tetramer dissociation. Unexpectedly, in the absence of oxygen, Co-C bond cleavage is followed by reorientation of the corrin ring and a switch from a lower to upper histidine-Co ligation, corresponding to a pentacoordinate state. Under aerobic conditions, rapid flash-cooling of crystals prior to deterioration upon illumination confirm a similar B12-ligand switch occurs. Removal of the upper His-ligating residue prevents monomer formation upon illumination. Combined with detailed solution spectroscopy and computational studies, these data demonstrate the CarH photoresponse integrates B12 photo- and redox-chemistry to drive large-scale conformational changes through stepwise Co-ligation changes.


Assuntos
Temperatura Baixa , Histidina , Ligantes , Oxirredução , Iluminação
4.
J Biol Chem ; 299(6): 104806, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172725

RESUMO

The ß-glucans are structurally varied, naturally occurring components of the cell walls, and storage materials of a variety of plant and microbial species. In the human diet, mixed-linkage glucans [MLG - ß-(1,3/4)-glucans] influence the gut microbiome and the host immune system. Although consumed daily, the molecular mechanism by which human gut Gram-positive bacteria utilize MLG largely remains unknown. In this study, we used Blautia producta ATCC 27340 as a model organism to develop an understanding of MLG utilization. B. producta encodes a gene locus comprising a multi-modular cell-anchored endo-glucanase (BpGH16MLG), an ABC transporter, and a glycoside phosphorylase (BpGH94MLG) for utilizing MLG, as evidenced by the upregulation of expression of the enzyme- and solute binding protein (SBP)-encoding genes in this cluster when the organism is grown on MLG. We determined that recombinant BpGH16MLG cleaved various types of ß-glucan, generating oligosaccharides suitable for cellular uptake by B. producta. Cytoplasmic digestion of these oligosaccharides is then performed by recombinant BpGH94MLG and ß-glucosidases (BpGH3-AR8MLG and BpGH3-X62MLG). Using targeted deletion, we demonstrated BpSBPMLG is essential for B. producta growth on barley ß-glucan. Furthermore, we revealed that beneficial bacteria, such as Roseburia faecis JCM 17581T, Bifidobacterium pseudocatenulatum JCM 1200T, Bifidobacterium adolescentis JCM 1275T, and Bifidobacterium bifidum JCM 1254, can also utilize oligosaccharides resulting from the action of BpGH16MLG. Disentangling the ß-glucan utilizing the capability of B. producta provides a rational basis on which to consider the probiotic potential of this class of organism.


Assuntos
Clostridiales , Dieta , Carboidratos da Dieta , Microbioma Gastrointestinal , beta-Glucanas , Humanos , beta-Glucanas/química , beta-Glucanas/metabolismo , Oligossacarídeos/metabolismo , Carboidratos da Dieta/metabolismo , Hordeum/química , Probióticos , Clostridiales/enzimologia , Clostridiales/metabolismo , Bifidobacterium/metabolismo
5.
Chemistry ; 29(29): e202203868, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912255

RESUMO

Mycobacterium tuberculosis (Mtb) was responsible for approximately 1.6 million deaths in 2021. With the emergence of extensive drug resistance, novel therapeutic agents are urgently needed, and continued drug discovery efforts required. Host-derived lipids such as cholesterol not only support Mtb growth, but are also suspected to function in immunomodulation, with links to persistence and immune evasion. Mtb cytochrome P450 (CYP) enzymes facilitate key steps in lipid catabolism and thus present potential targets for inhibition. Here we present a series of compounds based on an ethyl 5-(pyridin-4-yl)-1H-indole-2-carboxylate pharmacophore which bind strongly to both Mtb cholesterol oxidases CYP125 and CYP142. Using a structure-guided approach, combined with biophysical characterization, compounds with micromolar range in-cell activity against clinically relevant drug-resistant isolates were obtained. These will incite further development of much-needed additional treatment options and provide routes to probe the role of CYP125 and CYP142 in Mtb pathogenesis.


Assuntos
Mycobacterium tuberculosis , Sistema Enzimático do Citocromo P-450/metabolismo , Colesterol/química , Descoberta de Drogas , Antituberculosos/farmacologia , Antituberculosos/química
6.
ACS Catal ; 12(19): 12123-12131, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36249875

RESUMO

Terpenes are the largest class of natural products and are attractive targets in the fuel, fragrance, pharmaceutical, and flavor industries. Harvesting terpenes from natural sources is environmentally intensive and often gives low yields and purities, requiring further downstream processing. Engineered terpene synthases (TSs) offer a solution to these problems, but the low sequence identity and high promiscuity among TSs are major challenges for targeted engineering. Rational design of TSs requires identification of key structural and chemical motifs that steer product outcomes. Producing the sesquiterpenoid 10-epi-cubebol from farnesyl pyrophosphate (FPP) requires many steps and some of Nature's most difficult chemistry. 10-epi-Cubebol synthase from Sorangium cellulosum (ScCubS) guides a highly reactive carbocationic substrate through this pathway, preventing early quenching and ensuring correct stereochemistry at every stage. The cyclizations carried out by ScCubS potentially represent significant evolutionary expansions in the chemical space accessible by TSs. Here, we present the high-resolution crystal structure of ScCubS in complex with both a trinuclear magnesium cluster and pyrophosphate. Computational modeling, experiment, and bioinformatic analysis identified residues important in steering the reaction chemistry. We show that S206 is crucial in 10-epi-cubebol synthesis by enlisting the nearby F211 to shape the active site contour and prevent the formation of early escape cadalane products. We also show that N327 and F104 control the distribution between several early-stage cations and whether the final product is derived from the germacrane, cadalane, or cubebane hydrocarbon scaffold. Using these insights, we reengineered ScCubS so that its main product was germacradien-4-ol, which derives from the germacrane, rather than the cubebane, scaffold. Our work emphasizes that mechanistic understanding of cation stabilization in TSs can be used to guide catalytic outcomes.

7.
Nature ; 611(7937): 709-714, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36130727

RESUMO

The ability to program new modes of catalysis into proteins would allow the development of enzyme families with functions beyond those found in nature. To this end, genetic code expansion methodology holds particular promise, as it allows the site-selective introduction of new functional elements into proteins as noncanonical amino acid side chains1-4. Here we exploit an expanded genetic code to develop a photoenzyme that operates by means of triplet energy transfer (EnT) catalysis, a versatile mode of reactivity in organic synthesis that is not accessible to biocatalysis at present5-12. Installation of a genetically encoded photosensitizer into the beta-propeller scaffold of DA_20_00 (ref. 13) converts a de novo Diels-Alderase into a photoenzyme for [2+2] cycloadditions (EnT1.0). Subsequent development and implementation of a platform for photoenzyme evolution afforded an efficient and enantioselective enzyme (EnT1.3, up to 99% enantiomeric excess (e.e.)) that can promote intramolecular and bimolecular cycloadditions, including transformations that have proved challenging to achieve selectively with small-molecule catalysts. EnT1.3 performs >300 turnovers and, in contrast to small-molecule photocatalysts, can operate effectively under aerobic conditions and at ambient temperatures. An X-ray crystal structure of an EnT1.3-product complex shows how multiple functional components work in synergy to promote efficient and selective photocatalysis. This study opens up a wealth of new excited-state chemistry in protein active sites and establishes the framework for developing a new generation of enantioselective photocatalysts.


Assuntos
Biocatálise , Reação de Cicloadição , Enzimas , Processos Fotoquímicos , Aminoácidos/química , Aminoácidos/metabolismo , Reação de Cicloadição/métodos , Estereoisomerismo , Biocatálise/efeitos da radiação , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Enzimas/efeitos da radiação , Cristalografia por Raios X , Domínio Catalítico , Código Genético , Desenho de Fármacos
8.
Eur J Med Chem ; 230: 114105, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065413

RESUMO

There is a pressing need for new drugs against tuberculosis (TB) to combat the growing resistance to current antituberculars. Herein a novel strategy is described for hit generation against promising TB targets involving X-ray crystallographic screening in combination with phenotypic screening. This combined approach (XP Screen) affords both a validation of target engagement as well as determination of in cellulo activity. The utility of this method is illustrated by way of an XP Screen against CYP121A1, a cytochrome P450 enzyme from Mycobacterium tuberculosis (Mtb) championed as a validated drug discovery target. A focused screening set was synthesized and tested by such means, with several members of the set showing promising activity against Mtb strain H37Rv. One compound was observed as an X-ray hit against CYP121A1 and showed improved activity against Mtb strain H37Rv under multiple assay conditions (pan-assay activity). Data obtained during X-ray crystallographic screening were utilized in a structure-based campaign to design a limited number of analogues (less than twenty), many of which also showed pan-assay activity against Mtb strain H37Rv. These included the benzo[b][1,4]oxazine derivative (MIC90 6.25 µM), a novel hit compound suitable as a starting point for a more involved hit to lead candidate medicinal chemistry campaign.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Desenho de Fármacos , Humanos , Tuberculose/tratamento farmacológico , Raios X
9.
Biophys J ; 119(3): 667-689, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32652058

RESUMO

PSD-95 is a member of the membrane-associated guanylate kinase class of proteins that forms scaffolding interactions with partner proteins, including ion and receptor channels. PSD-95 is directly implicated in modulating the electrical responses of excitable cells. The first two PSD-95/disks large/zona occludens (PDZ) domains of PSD-95 have been shown to be the key component in the formation of channel clusters. We report crystal structures of this dual domain in both apo- and ligand-bound form: thermodynamic analysis of the ligand association and small-angle x-ray scattering of the dual domain in the absence and presence of ligands. These experiments reveal that the ligated double domain forms a three-dimensional scaffold that can be described by a space group. The concentration of the components in this study is comparable with those found in compartments of excitable cells such as the postsynaptic density and juxtaparanodes of Ranvier. These in vitro experiments inform the basis of the scaffolding function of PSD-95 and provide a detailed model for scaffold formation by the PDZ domains of PSD-95.


Assuntos
Proteínas do Tecido Nervoso , Domínios PDZ , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Ligantes , Proteínas do Tecido Nervoso/metabolismo , Peptídeos , Ligação Proteica
10.
PLoS One ; 15(6): e0235133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32584877

RESUMO

We have used a combination of computational and structure-based redesign of the low molecular weight protein tyrosine phosphatase, LMW-PTP, to create new activity towards phosphoinositide substrates for which the wild-type enzyme had little or no activity. The redesigned enzymes retain catalytic activity despite residue alterations in the active site, and kinetic experiments confirmed specificity for up to four phosphoinositide substrates. Changes in the shape and overall volume of the active site where critical to facilitate access of the new substrates for catalysis. The kinetics data suggest that both the position and the combination of amino acid mutations are important for specificity towards the phosphoinositide substrates. The introduction of basic residues proved essential to establish new interactions with the multiple phosphate groups in the inositol head, thus promoting catalytically productive complexes. The crystallographic structures of the top-ranking designs confirmed the computational predictions and showed that residue substitutions do not alter the overall folding of the phosphatase or the conformation of the active site P-loop. The engineered LMW-PTP mutants with new activities can be useful reagents in investigating cell signalling pathways and offer the potential for therapeutic applications.


Assuntos
Substituição de Aminoácidos , Simulação por Computador , Fosfatidilinositóis/química , Dobramento de Proteína , Proteínas Tirosina Fosfatases , Domínio Catalítico , Estrutura Secundária de Proteína , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
11.
J Med Chem ; 62(21): 9792-9805, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31618032

RESUMO

A series of analogues of cyclo(l-tyrosyl-l-tyrosine), the substrate of the Mycobacterium tuberculosis enzyme CYP121, have been synthesized and analyzed by UV-vis and electron paramagnetic resonance spectroscopy and by X-ray crystallography. The introduction of iodine substituents onto cyclo(l-tyrosyl-l-tyrosine) results in sub-µM binding affinity for the CYP121 enzyme and a complete shift to the high-spin state of the heme FeIII. The introduction of halogens that are able to interact with heme groups is thus a feasible approach to the development of next-generation, tight binding inhibitors of the CYP121 enzyme, in the search for novel antitubercular compounds.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Dipeptídeos/química , Dipeptídeos/metabolismo , Halogenação , Mycobacterium tuberculosis/enzimologia , Sistema Enzimático do Citocromo P-450/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
12.
Nature ; 574(7780): 722-725, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645759

RESUMO

The enzyme protochlorophyllide oxidoreductase (POR) catalyses a light-dependent step in chlorophyll biosynthesis that is essential to photosynthesis and, ultimately, all life on Earth1-3. POR, which is one of three known light-dependent enzymes4,5, catalyses reduction of the photosensitizer and substrate protochlorophyllide to form the pigment chlorophyllide. Despite its biological importance, the structural basis for POR photocatalysis has remained unknown. Here we report crystal structures of cyanobacterial PORs from Thermosynechococcus elongatus and Synechocystis sp. in their free forms, and in complex with the nicotinamide coenzyme. Our structural models and simulations of the ternary protochlorophyllide-NADPH-POR complex identify multiple interactions in the POR active site that are important for protochlorophyllide binding, photosensitization and photochemical conversion to chlorophyllide. We demonstrate the importance of active-site architecture and protochlorophyllide structure in driving POR photochemistry in experiments using POR variants and protochlorophyllide analogues. These studies reveal how the POR active site facilitates light-driven reduction of protochlorophyllide by localized hydride transfer from NADPH and long-range proton transfer along structurally defined proton-transfer pathways.


Assuntos
Clorofila/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Synechococcus/enzimologia , Synechocystis/enzimologia , Catálise , Clorofila/química , Estrutura Molecular , Fotoquímica , Protoclorifilida/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
13.
ChemistryOpen ; 8(7): 995-1011, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31367508

RESUMO

The emergence of untreatable drug-resistant strains of Mycobacterium tuberculosis is a major public health problem worldwide, and the identification of new efficient treatments is urgently needed. Mycobacterium tuberculosis cytochrome P450 CYP121A1 is a promising drug target for the treatment of tuberculosis owing to its essential role in mycobacterial growth. Using a rational approach, which includes molecular modelling studies, three series of azole pyrazole derivatives were designed through two synthetic pathways. The synthesized compounds were biologically evaluated for their inhibitory activity towards M. tuberculosis and their protein binding affinity (K D). Series 3 biarylpyrazole imidazole derivatives were the most effective with the isobutyl (10 f) and tert-butyl (10 g) compounds displaying optimal activity (MIC 1.562 µg/mL, K D 0.22 µM (10 f) and 4.81 µM (10 g)). The spectroscopic data showed that all the synthesised compounds produced a type II red shift of the heme Soret band indicating either direct binding to heme iron or (where less extensive Soret shifts are observed) putative indirect binding via an interstitial water molecule. Evaluation of biological and physicochemical properties identified the following as requirements for activity: LogP >4, H-bond acceptors/H-bond donors 4/0, number of rotatable bonds 5-6, molecular volume >340 Å3, topological polar surface area <40 Å2.

14.
Commun Biol ; 2: 271, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31372510

RESUMO

Dysregulation of the kynurenine pathway (KP) leads to imbalances in neuroactive metabolites associated with the pathogenesis of several neurodegenerative disorders, including Huntington's disease (HD). Inhibition of the enzyme kynurenine 3-monooxygenase (KMO) in the KP normalises these metabolic imbalances and ameliorates neurodegeneration and related phenotypes in several neurodegenerative disease models. KMO is thus a promising candidate drug target for these disorders, but known inhibitors are not brain permeable. Here, 19 new KMO inhibitors have been identified. One of these (1) is neuroprotective in a Drosophila HD model but is minimally brain penetrant in mice. The prodrug variant (1b) crosses the blood-brain barrier, releases 1 in the brain, thereby lowering levels of 3-hydroxykynurenine, a toxic KP metabolite linked to neurodegeneration. Prodrug 1b will advance development of targeted therapies against multiple neurodegenerative and neuroinflammatory diseases in which KP likely plays a role, including HD, Alzheimer's disease, and Parkinson's disease.


Assuntos
Encéfalo/efeitos dos fármacos , Quinurenina 3-Mono-Oxigenase/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Barreira Hematoencefálica , Encéfalo/metabolismo , Inibidores Enzimáticos/farmacologia , Peróxido de Hidrogênio/metabolismo , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Camundongos , Doenças Neurodegenerativas/enzimologia
15.
mBio ; 10(3)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186316

RESUMO

Natural competence is the term used to describe the uptake of "naked" extracellular DNA by bacteria; it plays a significant role in horizontal genetic exchange. It is associated with type IV pili, and specialized competence pili mediate DNA uptake. Here, we show that the crystal structure of a competence-associated protein from Thermus thermophilus, ComZ, consists of a type II secretion pseudopilin-like domain, with a large ß-solenoid domain inserted into the ß-sheet of the pilin-like fold. ComZ binds with high affinity to another competence-associated pilin, PilA2, which lies adjacent to the comZ gene in the genome. The crystal structure of PilA2 revealed a similar type II secretion pseudopilin-like fold, with a small subdomain; docking simulations predicted that PilA2 binds between the pseudopilin-like and ß-solenoid domains of ComZ. Electrophoretic shift analysis and DNase protection studies were used to show that ComZ alone and the ComZ/PilA2 complex are able to bind DNA. Protection against reductive dimethylation was used in combination with mass spectrometry and site-directed mutagenesis to identify two lysine residues in ComZ which are involved in DNA binding. They are located between the two domains in ComZ, on the opposite side from the predicted PilA2 binding site. These results suggest a model in which PilA2 assists ComZ in forming the competence pilus tip and DNA binds to the side of the fiber. The results demonstrate how a type IV pilin can be adapted to a specific function by domain insertion and provide the first structural insights into a tip-located competence pilin.IMPORTANCEThermus thermophilus is a thermophilic bacterium which is capable of natural transformation, the uptake of external DNA with high efficiency. DNA uptake is thought to be mediated by a competence-associated pilus, which binds the DNA substrate and mediates its transfer across the outer membrane and periplasm. Here, we describe the structural and functional analysis of two pilins which are known to be essential for DNA uptake, ComZ and PilA2. ComZ adopts an unusual structure, incorporating a large ß-solenoid domain into the pilin structural framework. We argue on structural grounds that this structure cannot readily be accommodated into the competence pilus fiber unless it is at the tip. We also show that ComZ binds DNA and identify two lysine residues which appear to be important for DNA binding. These results suggest a model in which ComZ and PilA2 form a tip-associated DNA receptor which mediates DNA uptake.


Assuntos
Competência de Transformação por DNA , Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Receptores de Superfície Celular/química , Thermus thermophilus/genética , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Domínios Proteicos , Receptores de Superfície Celular/genética
16.
Sci Rep ; 9(1): 9067, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227800

RESUMO

Engineered protein scaffolds are an alternative to monoclonal antibodies in research and drug design due to their small size, ease of production, versatility, and specificity for chosen targets. One key consideration when engineering such proteins is retaining the original scaffold structure and stability upon insertion of target-binding loops. SQT is a stefin A derived scaffold protein that was used as a model to study possible problems associated with solution behaviour of such aptamers. We used an SQT variant with AU1 and Myc insertion peptides (SQT-1C) to study the effect of peptide insertions on protein structure and oligomerisation. The X-ray structure of monomeric SQT-1C revealed a cystatin-like fold. Furthermore, we show that SQT-1C readily forms dimers and tetramers in solution. NMR revealed that these oligomers are symmetrical, with inserted loops comprising the interaction interface. Two possible mechanisms of oligomerisation are compared using molecular dynamics simulations, with domain swap oligomerisation being thermodynamically favoured. We show that retained secondary structure upon peptide insertion is not indicative of unaltered 3D structure and solution behaviour. Therefore, additional methods should be employed to comprehensively assess the consequences of peptide insertions in all aptamers, particularly as uncharacterized oligomerisation may alter binding epitope presentation and affect functional efficiency.


Assuntos
Cistatinas/química , Engenharia de Proteínas , Cristalografia por Raios X , Epitopos/química , Polimerização , Conformação Proteica
17.
ACS Catal ; 9(5): 4394-4401, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31080692

RESUMO

Catechol-O-methyltransferase (COMT) is a model S-adenosyl-l-methionine (SAM) dependent methyl transferase, which catalyzes the methylation of catecholamine neurotransmitters such as dopamine in the primary pathway of neurotransmitter deactivation in animals. Despite extensive study, there is no consensus view of the physical basis of catalysis in COMT. Further progress requires experimental data that directly probes active site geometry, protein dynamics and electrostatics, ideally in a range of positions along the reaction coordinate. Here we establish that sinefungin, a fungal-derived inhibitor of SAM-dependent enzymes that possess transition state-like charge on the transferring group, can be used as a transition state analog of COMT when combined with a catechol. X-ray crystal structures and NMR backbone assignments of the ternary complexes of the soluble form of human COMT containing dinitrocatechol, Mg2+ and SAM or sinefungin were determined. Comparison and further analysis with the aid of density functional theory calculations and molecular dynamics simulations provides evidence for active site "compaction", which is driven by electrostatic stabilization between the transferring methyl group and "equatorial" active site residues that are orthogonal to the donor-acceptor (pseudo reaction) coordinate. We propose that upon catecholamine binding and subsequent proton transfer to Lys 144, the enzyme becomes geometrically preorganized, with little further movement along the donor-acceptor coordinate required for methyl transfer. Catalysis is then largely facilitated through stabilization of the developing charge on the transferring methyl group via "equatorial" H-bonding and electrostatic interactions orthogonal to the donor-acceptor coordinate.

18.
Nat Commun ; 10(1): 2344, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138806

RESUMO

Infection by soil transmitted parasitic helminths, such as Trichuris spp, are ubiquitous in humans and animals but the mechanisms determining persistence of chronic infections are poorly understood. Here we show that p43, the single most abundant protein in T. muris excretions/secretions, is non-immunogenic during infection and has an unusual sequence and structure containing subdomain homology to thrombospondin type 1 and interleukin (IL)-13 receptor (R) α2. Binding of p43 to IL-13, the key effector cytokine responsible for T. muris expulsion, inhibits IL-13 function both in vitro and in vivo. Tethering of p43 to matrix proteoglycans presents a bound source of p43 to facilitate interaction with IL-13, which may underpin chronic intestinal infection. Our results suggest that exploiting the biology of p43 may open up new approaches to modulating IL-13 function and control of Trichuris infections.


Assuntos
Proteínas de Helminto/metabolismo , Interleucina-13/metabolismo , Enteropatias Parasitárias/metabolismo , Proteoglicanas/metabolismo , Trichuris/metabolismo , Animais , Matriz Extracelular/metabolismo , Proteínas de Helminto/imunologia , Interleucina-13/imunologia , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Enteropatias Parasitárias/imunologia , Camundongos , Homologia de Sequência de Aminoácidos , Trombospondina 1/metabolismo , Tricuríase
19.
Sci Rep ; 9(1): 1577, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733479

RESUMO

Flavocytochrome P450 BM3 is a natural fusion protein constructed of cytochrome P450 and NADPH-cytochrome P450 reductase domains. P450 BM3 binds and oxidizes several mid- to long-chain fatty acids, typically hydroxylating these lipids at the ω-1, ω-2 and ω-3 positions. However, protein engineering has led to variants of this enzyme that are able to bind and oxidize diverse compounds, including steroids, terpenes and various human drugs. The wild-type P450 BM3 enzyme binds inefficiently to many azole antifungal drugs. However, we show that the BM3 A82F/F87V double mutant (DM) variant binds substantially tighter to numerous azole drugs than does the wild-type BM3, and that their binding occurs with more extensive heme spectral shifts indicative of complete binding of several azoles to the BM3 DM heme iron. We report here the first crystal structures of P450 BM3 bound to azole antifungal drugs - with the BM3 DM heme domain bound to the imidazole drugs clotrimazole and tioconazole, and to the triazole drugs fluconazole and voriconazole. This is the first report of any protein structure bound to the azole drug tioconazole, as well as the first example of voriconazole heme iron ligation through a pyrimidine nitrogen from its 5-fluoropyrimidine ring.


Assuntos
Antifúngicos/química , Azóis/química , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Antifúngicos/farmacologia , Azóis/farmacologia , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Análise Espectral , Relação Estrutura-Atividade
20.
J Inorg Biochem ; 188: 18-28, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30119014

RESUMO

The CYP152 family of cytochrome P450 enzymes (P450s or CYPs) are bacterial peroxygenases that use hydrogen peroxide to drive hydroxylation and decarboxylation of fatty acid substrates. We have expressed and purified a novel CYP152 family member - CYP152K6 from the methylotroph Bacillus methanolicus MGA3. CYP152K6 was characterized using spectroscopic, analytical and structural methods. CYP152K6, like its peroxygenase counterpart P450SPα (CYP152B1) from Sphingomonas paucimobilis, does not undergo significant fatty acid-induced perturbation to the heme spectrum, with the exception of a minor Soret shift observed on binding dodecanoic acid. However, CYP152K6 purified from an E. coli expression system was crystallized and its structure was determined to 1.3 Šwith tetradecanoic acid bound. No lipids were present in conditions used for crystallogenesis, and thus CYP152K6 must form a complex by incorporating the fatty acid from E. coli cells. Turnover studies with dodecanoic acid revealed several products, with 2-hydroxydodecanoic acid as the major product and much smaller quantities of 3-hydroxydodecanoic acid. Secondary turnover products were undec-1-en-1-ol, 2-hydroxydodec-2-enoic acid and 2,3-dihydroxydodecanoic acid. This is the first report of a 2,3-hydroxylated fatty acid product made by a peroxygenase P450, with the dihydroxylated product formed by CYP152K6-catalyzed 3-hydroxylation of 2-hydroxydodecanoic acid, but not by 2-hydroxylation of 3-hydroxydodecanoic acid.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Ácidos Graxos/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Hidroxilação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...