Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(7): e1012320, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012849

RESUMO

Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.


Assuntos
Apoptose , RNA de Cadeia Dupla , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , Filogenia , Poli I-C/farmacologia , Cnidários/genética , Evolução Biológica
2.
Nat Commun ; 14(1): 249, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646703

RESUMO

Venom is a complex trait with substantial inter- and intraspecific variability resulting from strong selective pressures acting on the expression of many toxic proteins. However, understanding the processes underlying toxin expression dynamics that determine the venom phenotype remains unresolved. By interspecific comparisons we reveal that toxin expression in sea anemones evolves rapidly and that in each species different toxin family dictates the venom phenotype by massive gene duplication events. In-depth analysis of the sea anemone, Nematostella vectensis, revealed striking variation of the dominant toxin (Nv1) diploid copy number across populations (1-24 copies) resulting from independent expansion/contraction events, which generate distinct haplotypes. Nv1 copy number correlates with expression at both the transcript and protein levels with one population having a near-complete loss of Nv1 production. Finally, we establish the dominant toxin hypothesis which incorporates observations in other venomous lineages that animals have convergently evolved a similar strategy in shaping their venom.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Venenos de Cnidários/genética , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Fenótipo
3.
Elife ; 112022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289745

RESUMO

While the biogenesis of microRNAs (miRNAs) in both animals and plants depends on the RNase III Dicer, its partner proteins are considered distinct for each kingdom. Nevertheless, recent discovery of homologs of Hyponastic Leaves1 (HYL1), a 'plant-specific' Dicer partner, in the metazoan phylum Cnidaria, challenges the view that miRNAs evolved convergently in animals and plants. Here, we show that the HYL1 homolog Hyl1-like a (Hyl1La) is crucial for development and miRNA biogenesis in the cnidarian model Nematostella vectensis. Inhibition of Hyl1La by morpholinos resulted in metamorphosis arrest in Nematostella embryos and a significant reduction in levels of most miRNAs. Further, meta-analysis of morphants of miRNA biogenesis components, like Dicer1, shows clustering of their miRNA profiles with Hyl1La morphants. Strikingly, immunoprecipitation of Hyl1La followed by quantitative PCR revealed that in contrast to the plant HYL1, Hyl1La interacts only with precursor miRNAs and not with primary miRNAs. This was complemented by an in vitro binding assay of Hyl1La to synthetic precursor miRNA. Altogether, these results suggest that the last common ancestor of animals and plants carried a HYL1 homolog that took essential part in miRNA biogenesis and indicate early emergence of the miRNA system before plants and animals separated.


In both animals and plants, small molecules known as micro ribonucleic acids (or miRNAs for short) control the amount of proteins cells make from instructions encoded in their DNA. Cells make mature miRNA molecules by cutting and modifying newly-made RNA molecules in two stages. Some of the components animals and plants utilize to make and use miRNAs are similar, but most are completely different. For example, in plants an enzyme known as Dicer cuts newly made RNAs into mature miRNAs with the help of a protein called HYL1, whereas humans and other animals do not have HYL1 and Dicer works with alternative partner proteins, instead. Therefore, it is generally believed that miRNAs evolved separately in animals and plants after they split from a common ancestor around 1.6 billion years ago. Recent studies on sea anemones and other primitive animals challenge this idea. Proteins similar to HYL1 in plants have been discovered in sea anemones and sponges, and sea anemone miRNAs show several similarities to plant miRNAs including their mode of action. However, it is not clear whether these HYL1-like proteins work in the same way as their plant counterparts. Here, Tripathi, Admoni et al. investigated the role of the HYL1-like protein in sea anemones. The experiments found that this protein was essential for the sea anemones to make miRNAs and to grow and develop properly. Unlike HYL1 in plants ­ which is involved in both stages of processing newly-made miRNAs into mature miRNAs ­ the sea anemone HYL1-like protein only helped in the second stage to make mature miRNAs from intermediate molecules known as precursor miRNAs. These findings demonstrate that some of the components plants use to make miRNAs also perform similar roles in sea anemones. This suggests that the miRNA system evolved before the ancestors of plants and animals separated from each other. Questions for future studies will include investigating how plants and animals evolved different miRNA machinery, and why sponges and jellyfish have HYL1-like proteins, whereas humans and other more complex animals do not.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Anêmonas-do-Mar , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas/genética , Proteínas de Ligação a RNA/metabolismo , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo
4.
Mol Biol Evol ; 38(10): 4546-4561, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34180999

RESUMO

Animals evolved a broad repertoire of innate immune sensors and downstream effector cascades for defense against RNA viruses. Yet, this system varies greatly among different bilaterian animals, masking its ancestral state. In this study, we aimed to characterize the antiviral immune response of the cnidarian Nematostella vectensis and decipher the function of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) known to detect viral double-stranded RNA (dsRNA) in bilaterians but activate different antiviral pathways in vertebrates and nematodes. We show that polyinosinic:polycytidylic acid (poly(I:C)), a mimic of long viral dsRNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), triggers a complex antiviral immune response bearing features distinctive for both vertebrate and invertebrate systems. Importantly, a well-characterized agonist of the vertebrate RIG-I receptor does not induce a significant transcriptomic response that bears signature of the antiviral immune response, which experimentally supports the results of a phylogenetic analysis indicating clustering of the two N. vectensis RLR paralogs (NveRLRa and NveRLRb) with MDA5. Furthermore, the results of affinity assays reveal that NveRLRb binds poly(I:C) and long dsRNA and its knockdown impairs the expression of putative downstream effector genes including RNA interference components. Our study provides for the first time the functional evidence for the conserved role of RLRs in initiating immune response to dsRNA that originated before the cnidarian-bilaterian split and lay a strong foundation for future research on the evolution of the immune responses to RNA viruses.


Assuntos
Antivirais , Cnidários , Animais , Imunidade Inata , Filogenia , RNA de Cadeia Dupla/genética
5.
Nat Commun ; 11(1): 6187, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273471

RESUMO

MicroRNAs (miRNAs) base-pair to messenger RNA targets and guide Argonaute proteins to mediate their silencing. This target regulation is considered crucial for animal physiology and development. However, this notion is based exclusively on studies in bilaterians, which comprise almost all lab model animals. To fill this phylogenetic gap, we characterize the functions of two Argonaute paralogs in the sea anemone Nematostella vectensis of the phylum Cnidaria, which is separated from bilaterians by ~600 million years. Using genetic manipulations, Argonaute-immunoprecipitations and high-throughput sequencing, we provide experimental evidence for the developmental importance of miRNAs in a non-bilaterian animal. Additionally, we uncover unexpected differential distribution of distinct miRNAs between the two Argonautes and the ability of one of them to load additional types of small RNAs. This enables us to postulate a novel model for evolution of miRNA precursors in sea anemones and their relatives, revealing alternative trajectories for metazoan miRNA evolution.


Assuntos
Proteínas Argonautas/genética , Duplicação Gênica , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/genética , Animais , Proteínas Argonautas/metabolismo , Sequência de Bases , Técnicas de Silenciamento de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Filogenia , Análise de Componente Principal , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Homologia de Sequência do Ácido Nucleico , Transcriptoma/genética
6.
Genes (Basel) ; 11(9)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948049

RESUMO

Nematostella vectensis has emerged as one as the most established models of the phylum Cnidaria (sea anemones, corals, hydroids and jellyfish) for studying animal evolution. The availability of a reference genome and the relative ease of culturing and genetically manipulating this organism make it an attractive model for addressing questions regarding the evolution of venom, development, regeneration and other interesting understudied questions. We and others have previously reported the use of tissue-specific promoters for investigating the function of a tissue or a cell type of interest in vivo. However, to our knowledge, genetic regulators at the whole organism level have not been reported yet. Here we report the identification and utilization of a ubiquitous promoter to drive a wide and robust expression of the fluorescent protein mCherry. We generated animals containing a TATA binding protein (TBP) promoter upstream of the mCherry gene. Flow cytometry and fluorescent microscopy revealed expression of mCherry in diverse cell types, accounting for more than 90% of adult animal cells. Furthermore, we detected a stable mCherry expression at different life stages and throughout generations. This tool will expand the existing experimental toolbox to facilitate genetic engineering and functional studies at the whole organism level.


Assuntos
Engenharia Genética/métodos , Proteínas Luminescentes/metabolismo , Regiões Promotoras Genéticas , Proteína de Ligação a TATA-Box/genética , Transgenes , Envelhecimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Proteínas Luminescentes/genética , Anêmonas-do-Mar , Proteína Vermelha Fluorescente
7.
Viruses ; 12(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075325

RESUMO

The role of viruses in forming a stable holobiont has been the subject of extensive research in recent years. However, many emerging model organisms still lack any data on the composition of the associated viral communities. Here, we re-analyzed seven publicly available transcriptome datasets of the starlet sea anemone Nematostella vectensis, the most commonly used anthozoan lab model, and searched for viral sequences. We applied a straightforward, yet powerful approach of de novo assembly followed by homology-based virus identification and a multi-step, thorough taxonomic validation. The comparison of different lab populations of N. vectensis revealed the existence of the core virome composed of 21 viral sequences, present in all adult datasets. Unexpectedly, we observed an almost complete lack of viruses in the samples from the early developmental stages, which together with the identification of the viruses shared with the major source of the food in the lab, the brine shrimp Artemia salina, shed new light on the course of viral species acquisition in N. vectensis. Our study provides an initial, yet comprehensive insight into N. vectensis virome and sets the first foundation for the functional studies of viruses and antiviral systems in this lab model cnidarian.


Assuntos
Anêmonas-do-Mar/virologia , Transcriptoma , Viroma , Vírus/classificação , Animais , Feminino , Estágios do Ciclo de Vida , Filogenia , RNA-Seq , Carga Viral
8.
Homo ; 71(1): 43-50, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31939994

RESUMO

The beginning of the early Middle Ages period in Poland (10th-14th century) has been widely debated in the context of an active demographic inflow from other countries and its contribution to the creation of the new country. Finding chamber graves which are considered typical for the Scandinavian ethnic group in a few cemeteries in Poland has become the basis for the anthropological inference on the potential participation of North European people in forming the social elite of medieval Poland. However, the question of whether this fact was the result of presence of people from other countries lacks an unambiguous answer. We attempted to isolate ancient DNA from the medieval necropolis in Kaldus where several chamber graves have been found and analysed the genetic diversity of maternal lineage of this population. We analysed the HVR I fragment and coding regions to assess the mitochondrial DNA haplogroup. We have identified a few relatively rare haplogroups (A2, T2b4a, HV, K1a11, J2b1a, and X2) which were previously found in early medieval sites in Norway and Denmark. Obtained results might suggest genetic relation between the people of Kaldus and past northern Europe populations. Present and further research can undoubtedly shed new light on the aspect of the formation of the early medieval Polish population.


Assuntos
Cemitérios/história , DNA Mitocondrial/genética , Haplótipos/genética , População Branca/genética , Adulto , Antropologia Física , Criança , Feminino , História Medieval , Humanos , Masculino , Polônia
10.
Infect Genet Evol ; 63: 62-72, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29763671

RESUMO

The last decade has seen sharp progress in the field of human evolutionary genetics and a great amount of genetic evidence of natural selection has been provided so far. Since host-pathogen co-evolution is difficult to trace due to the polygenic nature of human susceptibility to microbial diseases, of particular interest is any signal of natural selection in response to the strong selective pressure exerted by pathogens. Analysis of ancient DNA allows for the direct insight into changes of a gene pool content over time and enables monitoring allele frequency fluctuations. Among pathogenic agents, mycobacteria are proved to have remained in an intimate, long-lasting relation with humans, reflected by the current high level of host resistance. Therefore, we aimed to investigate the prevalence of several polymorphisms within innate immune response genes related to susceptibility to mycobacterial diseases (in SLC11A1, MBL2, TLR2, P2RX7, IL10, TNFA) in time series data from North and East Poland (1st-18th century AD, n = 207). The comparison of allele frequencies over time revealed a predominant role of genetic drift in shaping past gene pool of small, probably isolated groups, which was explained by the high level of population differentiation and limited gene flow. However, the trajectory of frequency fluctuations of two SNPs suggested the possibility of their non-neutral evolution and the results of applied forward simulations further strengthened the hypothesis of natural selection acting on those loci. However, we observed an unusual excess of homozygosity in the profile of several SNPs, which pinpoints to the necessity of further research on temporally and spatially diverse samples to support our inference on non-stochastic evolution, ideally employing pathway-based approaches. Nevertheless, our study confirms that time series data could help to decipher very recent human adaptation to life-threatening pathogens and assisting demographic events.


Assuntos
DNA Antigo/isolamento & purificação , DNA/genética , Imunidade Inata/genética , Seleção Genética/genética , Arqueologia , Evolução Molecular , Genótipo , Humanos , Polônia
11.
Infect Genet Evol ; 47: 1-8, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27847329

RESUMO

For thousands of years human beings have resisted life-threatening pathogens. This ongoing battle is considered to be the major force shaping our gene pool as every micro-evolutionary process provokes specific shifts in the genome, both that of the host and the pathogen. Past populations were more susceptible to changes in allele frequencies not only due to selection pressure, but also as a result of genetic drift, migration and inbreeding. In the present study we have investigated the frequency of five polymorphisms within innate immune-response genes (SLC11A1 D543N, MBL2 G161A, P2RX7 A1513C, IL10 A-1082G, TLR2 -196 to -174 ins/del) related to susceptibility to infections in humans. The DNA of individuals from two early Roman-Period populations of Linowo and Rogowo was analysed. The distribution of three mutations varied significantly when compared to the modern Polish population. The TAFT analysis suggests that the decreased frequency of SLC11A1 D543N in modern Poles as compared to 2nd century Linowo samples is the result of non-stochastic mechanisms, such as purifying or balancing selection. The disparity in frequency of other mutations is most likely the result of genetic drift, an evolutionary force which is remarkably amplified in low-size groups. Together with the FST analysis, mtDNA haplotypes' distribution and deviation from the Hardy-Weinberg equilibrium, we suggest that the two populations were not interbreeding (despite the close proximity between them), but rather inbreeding, the results of which are particularly pronounced among Rogowo habitants.


Assuntos
Doenças Transmissíveis/genética , DNA Antigo/análise , Predisposição Genética para Doença/genética , Proteínas de Transporte de Cátions/genética , Deriva Genética , História Antiga , Humanos , Imunidade Inata/genética , Polônia , Polimorfismo de Nucleotídeo Único/genética , Mundo Romano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA