Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(34)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813672

RESUMO

Single-crystal magnetic nanostructures with well-defined shapes attract lots of interest due to their potential applications in magnetic and spintronic devices. However, development of methods allowing controlling their mutual crystallographic and geometric orientation constitutes a significant scientific challenge. One of the routes for obtaining such structures is to grow the materials epitaxially on naturally-structured supports, such as vicinal surfaces of single-crystal substrates. Iron oxides are among the most well-known magnetic materials which, depending on the phase, may exhibit ferro/ferri- or antiferromagnetic ordering. We have grown iron oxide nanowires on a Cu(410) single-crystal substrate faceted with molecular oxygen. Scanning tunneling microscopy and low energy electron diffraction revealed that the oxide grows in the [111] direction, along the step edges of the substrate and rotated by ±15° with respect to the [010] direction of copper atomic terraces (so that the the growing elongated structures are orientated parallel to each other). Notably, x-ray photoelectron spectroscopy confirmed that the nanowires represent the ferrimagneticγ-Fe2O3(maghemite) iron oxide phase, while micromagnetic simulations indicated that the wires are single-domain, with the easy magnetization axis orientated in-plane and along the long axis of the wire.

2.
ACS Synth Biol ; 12(8): 2320-2328, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37449651

RESUMO

The COVID-19 pandemic has stimulated the scientific world to intensify virus-related studies aimed at the development of quick and safe ways of detecting viruses in the human body, studying the virus-antibody and virus-cell interactions, and designing nanocarriers for targeted antiviral therapies. However, research on dangerous viruses can only be performed in certified laboratories that follow strict safety procedures. Thus, developing deactivated virus constructs or safe-to-use virus-like objects, which imitate real viruses and allow performing virus-related studies in any research laboratory, constitutes an important scientific challenge. Such species, called virus-like particles (VLPs), contain instead of capsids with viral DNA/RNA empty or synthetic cores with real virus proteins attached to them. We have developed a method for the preparation of VLPs imitating the virus responsible for the COVID-19 disease: the SARS-CoV-2. The particles have Au cores surrounded by "coronas" of S1 domains of the virus's spike protein. Importantly, they are safe to use and specifically interact with SARS-CoV-2 antibodies. Moreover, Au cores exhibit localized surface plasmon resonance (LSPR), which makes the synthesized VLPs suitable for biosensing applications. During the studies, the effect allowed us to visualize the interaction between the VLPs and the antibodies and identify the characteristic vibrational signals. What is more, additional functionalization of the particles with a fluorescent label revealed their potential in studying specific virus-related interactions. Notably, the universal character of the developed synthesis method makes it potentially applicable for fabricating VLPs imitating other life-threatening viruses.


Assuntos
COVID-19 , Coroa de Proteína , Vírus , Humanos , SARS-CoV-2/genética , Pandemias , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Vírus/genética , RNA Viral
3.
Sci Rep ; 12(1): 22060, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543839

RESUMO

We studied the structural, chemical, and magnetic properties of Ti/Au/Co/Ni layered systems subjected to plasma oxidation. The process results in the formation of NiO at the expense of metallic Ni, as clearly evidenced by X-ray photoelectron spectroscopy, while not affecting the surface roughness and grain size of the Co/Ni bilayers. Since the decrease of the thickness of the Ni layer and the formation of NiO increase the perpendicular magnetic anisotropy, oxidation may be locally applied for magnetic patterning. Using this approach, we created 2D heterostructures characterized by different combinations of magnetic properties in areas modified by plasma oxidation and in the regions protected from oxidation. As plasma oxidation is an easy to use, low cost, and commonly utilized technique in industrial applications, it may constitute an improvement over other magnetic patterning methods.

4.
Cryst Growth Des ; 22(7): 4618-4639, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35818386

RESUMO

The current state-of-the-art in the growth, structure, and physicochemical properties of iron nitride thin films is presented. First, different iron nitride phases are introduced based on their crystallographic structure and the Fe-N phase diagram. Second, preparation methods for thin iron nitride films are described. Next, the structure, electronic, and magnetic properties of the films are discussed. Finally, potential applications of iron nitride films, as well as the challenges to be faced in the field, are highlighted. This Review constitutes a starting point for anyone who would like to conduct research on these fascinating materials, the scientific and technological potential of which has not been fully explored to date.

5.
Materials (Basel) ; 14(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073476

RESUMO

The structural characterization of glass slides surface-modified with 3-azidopropyltrimethoxysilane and used for anchoring nucleic acids, resulting in the so-called DNA microarrays, is presented. Depending on the silanization conditions, the slides were found to show different oligonucleotide binding efficiency, thus, an attempt was made to correlate this efficiency with the structural characteristics of the silane layers. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray reflectometry (XRR) measurements provided information on the surface topography, chemical composition and thickness of the silane films, respectively. The surface for which the best oligonucleotides binding efficiency is observed, has been found to consist of a densely-packed silane layer, decorated with a high-number of additional clusters that are believed to host exposed azide groups.

6.
Phys Chem Chem Phys ; 23(14): 8439-8445, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876007

RESUMO

Low-temperature scanning tunnelling microscopy (STM) is employed to study electron-stimulated desorption of vanadyl groups from an ultrathin vanadium oxide film. The vanadia patches are prepared by reactive vapour deposition of V onto a Ru(0001) surface and comprise a highly ordered network of six and twelve membered V-O rings, some of them terminated by upright V[double bond, length as m-dash]O groups. The vanadyl units can be desorbed via electron injection from the STM tip in a reliable fashion. From hundreds of individual experiments, desorption rates are determined as a function of bias voltage and tunnelling current. Data analysis reveals a distinct threshold behaviour with bias onsets at +3.3 V and -2.6 V for positive and negative polarity, respectively. The desorption rate varies quadratically (cubically) with the tunnelling current at positive (negative) sample bias, indicating that V[double bond, length as m-dash]O desorption is a many-electron process. Based on our findings, a mechanism for desorption is proposed that includes resonant tunnelling into anti-bonding or out of bonding orbitals, followed by vibrational ladder climbing in the binding potential of the V[double bond, length as m-dash]O ad-system. The underlying electronic states can be identified directly in the STM conductance spectra taken on the oxide surface.

7.
Nanomaterials (Basel) ; 8(10)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322159

RESUMO

Ultrathin transition metal oxide films exhibit unique physical and chemical properties not observed for the corresponding bulk oxides. These properties, originating mainly from the limited thickness and the interaction with the support, make those films similar to other supported 2D materials with bulk counterparts, such as transition metal dichalcogenides. Ultrathin iron oxide (FeO) films, for example, were shown to exhibit unique electronic, catalytic and magnetic properties that depend on the type of the used support. Ag(111) has always been considered a promising substrate for FeO growth, as it has the same surface symmetry, only ~5% lattice mismatch, is considered to be weakly-interacting and relatively resistant to oxidation. The reports on the growth and structure of ultrathin FeO films on Ag(111) are scarce and often contradictory to each other. We attempted to shed more light on this system by growing the films using different preparation procedures and studying their structure using scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). We observed the formation of a previously unreported Moiré superstructure with 45 Å periodicity, as well as other reconstructed and reconstruction-free surface species. The experimental results obtained by us and other groups indicate that the structure of FeO films on this particular support critically depends on the films' preparation conditions. We also performed density functional theory (DFT) calculations on the structure and properties of a conceptual reconstruction-free FeO film on Ag(111). The results indicate that such a film, if successfully grown, should exhibit tunable thickness-dependent properties, being substrate-influenced in the monolayer regime and free-standing-FeO-like when in the bilayer form.

8.
Nanomaterials (Basel) ; 8(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213086

RESUMO

Iron oxide films epitaxially grown on close-packed metal single crystal substrates exhibit nearly-perfect structural order, high catalytic activity (FeO) and room-temperature magnetism (Fe3O4). However, the morphology of the films, especially in the ultrathin regime, can be significantly influenced by the crystalline structure of the used support. This work reports an ultra-high vacuum (UHV) low energy electron/synchrotron light-based X-ray photoemission electron microscopy (LEEM/XPEEM) and electron diffraction (µLEED) study of the growth of FeO and Fe3O4 on two closed-packed metal single crystal surfaces: Pt(111) and Ru(0001). The results reveal the influence of the mutual orientation of adjacent substrate terraces on the morphology of iron oxide films epitaxially grown on top of them. On fcc Pt(111), which has the same mutual orientation of adjacent monoatomic terraces, FeO(111) grows with the same in-plane orientation on all substrate terraces. For Fe3O4(111), one or two orientations are observed depending on the growth conditions. On hcp Ru(0001), the adjacent terraces of which are 'rotated' by 180° with respect to each other, the in-plane orientation of initial FeO(111) and Fe3O4(111) crystallites is determined by the orientation of the substrate terrace on which they nucleated. The adaptation of three-fold symmetric iron oxides to three-fold symmetric substrate terraces leads to natural structuring of iron oxide films, i.e., the formation of patch-like magnetite layers on Pt(111) and stripe-like FeO and Fe3O4 structures on Ru(0001).

9.
Beilstein J Nanotechnol ; 9: 591-601, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527434

RESUMO

Reduced graphene oxide-magnetite hybrid aerogels attract great interest thanks to their potential applications, e.g., as magnetic actuators. However, the tendency of magnetite particles to migrate within the matrix and, ultimately, escape from the aerogel structure, remains a technological challenge. In this article we show that coating magnetite particles with polydopamine anchors them on graphene oxide defects, immobilizing the particles in the matrix and, at the same time, improving the aerogel structure. Polydopamine coating does not affect the magnetic properties of magnetite particles, making the fabricated materials promising for industrial applications.

10.
Nanotechnology ; 28(5): 055603, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28029097

RESUMO

Magnetite nanoparticles (NPs) decorated with silver (magnetite/Ag) are intensively investigated due to their application in the biomedical field. We demonstrate that the increase of silver content on the surface of nanoparticles improves the adsorptivity of antibiotic rifampicin as well as antibacterial properties. The use of ginger extract allowed to improve the silver nucleation on the magnetite surface that resulted in an increase of silver content. Physicochemical and functional characterization of magnetite/Ag NPs was performed. Our results show that 5%-10% of silver content in magnetite/Ag NPs is already sufficient for antimicrobial properties against Streptococcus salivarius and Staphylococcus aureus. The rifampicin molecules on the magnetite/Ag NPs surface made the spectrum of antimicrobial activity wider. Cytotoxicity evaluation of the magnetite/Ag/rifampicin NPs showed no harmful action towards normal human fibroblasts, whereas the effect on human embryonic kidney cell viability was time and dose dependent.


Assuntos
Antibacterianos/farmacologia , Nanopartículas de Magnetita/química , Rifampina/farmacologia , Prata/farmacologia , Zingiber officinale/química , Adsorção/efeitos dos fármacos , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células HEK293 , Humanos , Nanopartículas de Magnetita/ultraestrutura , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rifampina/química , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus salivarius/efeitos dos fármacos , Streptococcus salivarius/crescimento & desenvolvimento
11.
Artigo em Inglês | MEDLINE | ID: mdl-26615580

RESUMO

BACKGROUND/AIMS: The aim of this study was to associate children's growth disorders with polymorphisms detected in the P1 promoter region of IGF1 (including SNP and (CA) n microsatellite repeat polymorphism) and IGF1 and IGFPB3 levels. METHODS: IGF-1 gene P1 promoter polymorphism was analyzed in DNA obtained from the blood of 51 children with growth disorders and 50 healthy children without growth disorders by means of PCR-SSCP and sequencing. RESULTS: Among children with growth disorders and the control group we found previously described polymorphisms in the P1 promoter of the IGF-1 gene (rs35767, rs5742612) and different genotypes. The frequency of both detected polymorphisms was no significantly different in the study and the control groups. The CA repeat sequence within the group of children in the study ranged from 11 to 21. The most common were homozygote 19/19 (49.02%) and heterozygote 19/20 (27.45%). Our results did not show any association between polymorphisms in the P1 promoter and IGF-1 levels in the serum of children with growth disorders. CONCLUSIONS: This study demonstrated that SNP and (CA) n microsatellite repeat polymorphisms by themselves are not the primary regulatory elements of IGF-1 expression. However, our bioinformatics analysis has shown that the (CA) n microsatellite region in the P1 promoter of IGF-1 is able to form DNA loop structures which can modulate transcription.


Assuntos
Transtornos do Crescimento/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Polimorfismo Genético , Regiões Promotoras Genéticas , Adolescente , Criança , Feminino , Humanos , Masculino
12.
Mater Sci Eng C Mater Biol Appl ; 55: 343-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26117765

RESUMO

The article is devoted to preparation and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy. Magnetite nanopowder was produced by thermochemical technique; silver was deposited on the magnetite nanoparticles in the form of silver clusters. Magnetite/silver nanocomposite was investigated by XRD, SEM, TEM, AFM, XPS, EDX techniques. Adsorptivity of magnetite/silver nanocomposite towards seven antibiotics from five different groups was investigated. It was shown that rifampicin, doxycycline, ceftriaxone, cefotaxime and doxycycline may be attached by physical adsorption to magnetite/silver nanocomposite. Electrostatic surfaces of antibiotics were modeled and possible mechanism of antibiotic attachment is considered in this article. Raman spectra of magnetite, magnetite/silver and magnetite/silver/antibiotic were collected. It was found that it is difficult to detect the bands related to antibiotics in the magnetite/silver/antibiotic nanocomposite spectra due to their overlap by the broad carbon bands of magnetite nanopowder. Magnetic measurements revealed that magnetic saturation of the magnetite/silver/antibiotic nanocomposites decreased on 6-19 % in comparison with initial magnetite nanopowder. Pilot study of antimicrobial properties of the magnetite/silver/antibiotic nanocomposites were performed towards Bacillus pumilus.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanocompostos/química , Prata/química , Bacillus/efeitos dos fármacos , Cefotaxima/química , Doxiciclina/química , Nanopartículas de Magnetita/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Rifampina/química , Prata/farmacologia , Análise Espectral Raman , Eletricidade Estática , Difração de Raios X
13.
Chemphyschem ; 13(18): 4134-41, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23169540

RESUMO

Composites of unmodified or oxidized carbon nano-onions (CNOs/ox-CNOs) with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are prepared with different compositions. By varying the ratio of PEDOT:PSS relative to CNOs, CNO/PEDOT:PSS composites with various PEDOT:PSS loadings are obtained and the corresponding film properties are studied as a function of the polymer. X-ray photoelectron spectroscopy characterization is performed for pristine and ox-CNO samples. The composites are characterized by scanning and transmission electron microscopy and differential scanning calorimetry studies. The electrochemical properties of the nanocomposites are determined and compared. Doping the composites with carbon nanostructures significantly increases their mechanical and electrochemical stabilities. A comparison of the results shows that CNOs dispersed in the polymer matrices increase the capacitance of the CNO/PEDOT:PSS and ox-CNO/PEDOT:PSS composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...