Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37887375

RESUMO

Doliocarpus dentatus is thought to have a wide variety of therapeutic phytochemicals that allegedly improve libido and cure impotence. Although a few biomarkers have been identified with potential antinociceptive and cytotoxic properties, an untargeted mass spectrometry-based metabolomics approach has never been undertaken to identify therapeutic biofingerprints for conditions, such as erectile dysfunction, in men. This study executes a preliminary phytochemical screening of the woody vine of two ecotypes of D. dentatus with renowned differences in therapeutic potential for erectile dysfunction. Liquid chromatography-mass spectrometry-based metabolomics was used to screen for flavonoids, terpenoids, and other chemical classes found to contrast between red and white ecotypes. Among the metabolite chemodiversity found in the ecotype screens, using a combination of GNPS, MS-DIAL, and SIRIUS, approximately 847 compounds were annotated at levels 2 to 4, with the majority of compounds falling under lipid and lipid-like molecules, benzenoids and phenylpropanoids, and polyketides, indicative of the contributions of the flavonoid, shikimic acid, and terpenoid biosynthesis pathways. Despite the extensive annotation, we report on 138 tentative compound identifications of potentially therapeutic compounds, with 55 selected compounds at a level-2 annotation, and 22 statistically significant therapeutic biomarkers, the majority of which were polyphenols. Epicatechin methyl gallate, catechin gallate, and proanthocyanidin A2 had the greatest significant differences and were also relatively abundant among the red and white ecotypes. These putatively identified compounds reportedly act as antioxidants, neutralizing damaging free radicals, and lowering cell oxidative stress, thus aiding in potentially preventing cellular damage and promoting overall well-being, especially for treating erectile dysfunction (ED).

2.
Environ Sci Pollut Res Int ; 29(39): 58936-58949, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35377126

RESUMO

The critical rare earth element dysprosium (Dy) is integral for sustainable technologies. What is concerning is that Dy is in imminent short supply and no current replacements yet exist, coupled with increasing environmental Dy levels influenced by anthropogenic activities. This study applies chemometric methods such as response surface methodology and artificial neural networks to predict low Dy removal levels using the biosorbent Euglena gracilis. A three-factor Box-Behnken experimental design was conducted with initial concentration (1 to 100 µg L-1), contact time (30 to 180 min), and pH (3 to 8) as the three independent variables, and percentage removal and sorption capacity (q) as dependent variables. Using Dy percentage removal as response, for the worst and best conditions ranged from 0 to 92% respectively, with an average removal of 66 ± 4%. Using sorption capacity (q) as a different response variable, q varied from 0 to 93 µg/g with 27 ± 4 µg/g capacity as average. Maximum removal was 92% (q = 93 µg/g) was at pH 3, a contact time of 105 min and at a concentration of 100 µg/L. Using sorption capacity as the response variable for ANOVA, pH and metal concentrations were statistically significant factors, with lower pH and higher metal concentration having improved Dy removal, with a desirability near 1. Statistical tests such as analysis of variance, lack-of-fit, and coefficient of determination (R2) confirmed model validity. A 3-10-1 ANN network array was used to model experimental responses (q). RSM and ANN effectively modeled Dy biosorption. E. gracilis proved to be a cheap and effective biosorbent for Dy biosorption and has the potential to remediate acid mine drainage areas exhibiting low Dy concentrations.


Assuntos
Euglena gracilis , Poluentes Químicos da Água , Adsorção , Quimiometria , Disprósio , Concentração de Íons de Hidrogênio , Cinética , Redes Neurais de Computação
3.
Anal Bioanal Chem ; 412(17): 4143-4153, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32306068

RESUMO

Asymmetrical flow field-flow fractionation (AF4) and high-resolution Orbitrap mass spectrometry (HRMS) were used to separate and characterize cellular fractions of the dark- and light-grown Euglena gracilis cellular material. Biological replicates analyzed by HRMS shared 21-73% of commonly detected m/z values. Greater variability in shared features was found in light-grown cellular fractions (p < 0.05), likely due to small variations in growth stage. Significant differences in molecular composition were observed between AF4 cellular fractions, with dark cell fractions showing a propensity towards carbohydrate-like and tannin-like compounds, and higher double-bond equivalent (DBE) and modified aromatic index (AImod) were associated with light-grown cell fractions. Fractionation and high-resolution mass spectrometry aided characterization demonstrated the power of the AF4 to selectively cater to certain compounds/cellular entities with distinct compositional classes and double-bond equivalents and aromaticity index characteristics. Graphical abstract.


Assuntos
Euglena gracilis/citologia , Fracionamento por Campo e Fluxo/métodos , Sobrevivência Celular , Euglena gracilis/química , Euglena gracilis/crescimento & desenvolvimento , Espectrometria de Massas/métodos , Fotoperíodo , Extratos Vegetais/química
4.
J Nanomater ; 20162016.
Artigo em Inglês | MEDLINE | ID: mdl-30245705

RESUMO

Advances in nanotechnology provide opportunities for the prevention and treatment of periodontal disease. While physicochemical properties of Ag containing nanoparticles (NPs) are known to influence the magnitude of their toxicity, it is thought that nanosilver can be made less toxic to eukaryotes by passivation of the NPs with a benign metal. Moreover, the addition of other noble metals to silver nanoparticles, in the alloy formulation, is known to alter the silver dissolution behavior. Thus, we synthesized glutathione capped Ag/Au alloy bimetallic nanoparticles (NPs) via the galvanic replacement reaction between maltose coated Ag NPs and chloroauric acid (HAuCl4) in 5% aqueous triblock F127 copolymer solution. We then compared the antibacterial activity of the Ag/Au NPs to pure Ag NPs on Porphyromonas gingivalis W83, a key pathogen in the development of periodontal disease. Only partially oxidized glutathione capped Ag and Ag/Au (Au:Ag≈0.2) NPs inhibited the planktonic growth of P. gingivalis W83. This effect was enhanced in the presence of hydrogen peroxide, which simulates the oxidative stress environment in the periodontal pocket during chronic inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...