Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712285

RESUMO

Purpose: The radionuclide pair cerium-134/lanthanum-134 ( 134 Ce/ 134 La) was recently proposed as a suitable diagnostic counterpart for the therapeutic alpha-emitter actinium-225 ( 225 Ac). The unique properties of 134 Ce offer perspectives for developing innovative in vivo investigations not possible with 225 Ac. In this work, 225 Ac- and 134 Ce-labeled tracers were directly compared using internalizing and slow-internalizing cancer models to evaluate their in vivo comparability, progeny meandering, and potential as a matched theranostic pair for clinical translation. Despite being an excellent chemical match, 134 Ce/ 134 La has limitations to the setting of quantitative positron emission tomography imaging. Methods: The precursor PSMA-617 and a macropa-based tetrazine-conjugate (mcp-PEG 8 -Tz) were radiolabelled with 225 Ac or 134 Ce and compared in vitro and in vivo using standard (radio)chemical methods. Employing biodistribution studies and positron emission tomography (PET) imaging in athymic nude mice, the radiolabelled PSMA-617 tracers were evaluated in a PC3/PIP (PC3 engineered to express a high level of prostate-specific membrane antigen) prostate cancer mouse model. The 225 Ac and 134 Ce-labeled mcp-PEG 8 -Tz were investigated in a BxPC-3 pancreatic tumour model harnessing the pretargeting strategy based on a trans-cyclooctene-modified 5B1 monoclonal antibody. Results: In vitro and in vivo studies with both 225 Ac and 134 Ce-labelled tracers led to comparable results, confirming the matching pharmacokinetics of this theranostic pair. However, PET imaging of the 134 Ce-labelled precursors indicated that quantification is highly dependent on tracer internalization due to the redistribution of 134 Ce's PET-compatible daughter 134 La. Consequently, radiotracers based on internalizing vectors like PSMA-617 are suited for this theranostic pair, while slow-internalizing 225 Ac-labelled tracers are not quantitatively represented by 134 Ce PET imaging. Conclusion: When employing slow-internalizing vectors, 134 Ce might not be an ideal match for 225 Ac due to the underestimation of tumour uptake caused by the in vivo redistribution of 134 La. However, this same characteristic makes it possible to estimate the redistribution of 225 Ac's progeny noninvasively. In future studies, this unique PET in vivo generator will further be harnessed to study tracer internalization, trafficking of receptors, and the progression of the tumour microenvironment. TOC Graphic: Redistribution of progeny. Investigating the 225 Ac and 134 Ce decay chain. This figure was created with BioRender.

2.
Cell Metab ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38701775

RESUMO

Perivascular collagen deposition by activated fibroblasts promotes vascular stiffening and drives cardiovascular diseases such as pulmonary hypertension (PH). Whether and how vascular fibroblasts rewire their metabolism to sustain collagen biosynthesis remains unknown. Here, we found that inflammation, hypoxia, and mechanical stress converge on activating the transcriptional coactivators YAP and TAZ (WWTR1) in pulmonary arterial adventitial fibroblasts (PAAFs). Consequently, YAP and TAZ drive glutamine and serine catabolism to sustain proline and glycine anabolism and promote collagen biosynthesis. Pharmacologic or dietary intervention on proline and glycine anabolic demand decreases vascular stiffening and improves cardiovascular function in PH rodent models. By identifying the limiting metabolic pathways for vascular collagen biosynthesis, our findings provide guidance for incorporating metabolic and dietary interventions for treating cardiopulmonary vascular disease.

3.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617358

RESUMO

Surgeries and trauma result in traumatic and iatrogenic nerve damage that can result in a debilitating condition that approximately affects 189 million individuals worldwide. The risk of nerve injury during oncologic surgery is increased due to tumors displacing normal nerve location, blood turbidity, and past surgical procedures, which complicate even an experienced surgeon's ability to precisely locate vital nerves. Unfortunately, there is a glaring absence of contrast agents to assist surgeons in safeguarding vital nerves. To address this unmet clinical need, we leveraged the abundant expression of the voltage-gated sodium channel 1.7 (NaV1.7) as an intraoperative marker to access peripheral nerves in vivo, and visualized nerves for surgical guidance using a fluorescently-tagged version of a potent NaV1.7-targeted peptide, Tsp1a, derived from a Peruvian tarantula. We characterized the expression of NaV1.7 in sensory and motor peripheral nerves across mouse, primate, and human specimens and demonstrated universal expression. We synthesized and characterized a total of 10 fluorescently labeled Tsp1a-peptide conjugates to delineate nerves. We tested the ability of these peptide-conjugates to specifically accumulate in mouse nerves with a high signal-to-noise ratio in vivo. Using the best-performing candidate, Tsp1a-IR800, we performed thyroidectomies in non-human primates and demonstrated successful demarcation of the recurrent laryngeal and vagus nerves, which are commonly subjected to irreversible damage. The ability of Tsp1a to enhance nerve contrast during surgery provides opportunities to minimize nerve damage and revolutionize standards of care across various surgical specialties.

4.
J Nucl Med ; 65(4): 580-585, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485271

RESUMO

Aberrantly expressed glycans on mucins such as mucin-16 (MUC16) are implicated in the biology that promotes ovarian cancer (OC) malignancy. Here, we investigated the theranostic potential of a humanized antibody, huAR9.6, targeting fully glycosylated and hypoglycosylated MUC16 isoforms. Methods: In vitro and in vivo targeting of the diagnostic radiotracer [89Zr]Zr-DFO-huAR9.6 was investigated via binding experiments, immuno-PET imaging, and biodistribution studies on OC mouse models. Ovarian xenografts were used to determine the safety and efficacy of the therapeutic version, [177Lu]Lu-CHX-A″-DTPA-huAR9.6. Results: In vivo uptake of [89Zr]Zr-DFO-huAR9.6 supported in vitro-determined expression levels: high uptake in OVCAR3 and OVCAR4 tumors, low uptake in OVCAR5 tumors, and no uptake in OVCAR8 tumors. Accordingly, [177Lu]Lu-CHX-A″-DTPA-huAR9.6 displayed strong antitumor effects in the OVCAR3 model and improved overall survival in the OVCAR3 and OVCAR5 models in comparison to the saline control. Hematologic toxicity was transient in both models. Conclusion: PET imaging of OC xenografts showed that [89Zr]Zr-DFO-huAR9.6 delineated MUC16 expression levels, which correlated with in vitro results. Additionally, we showed that [177Lu]Lu-CHX-A″-DTPA-huAR9.6 displayed strong antitumor effects in highly MUC16-expressing tumors. These findings demonstrate great potential for 89Zr- and 177Lu-labeled huAR9.6 as theranostic tools for the diagnosis and treatment of OC.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno Ca-125 , Mucinas , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Apoptose , Antígeno Ca-125/imunologia , Linhagem Celular Tumoral , Proteínas de Membrana/imunologia , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/terapia , Ácido Pentético , Medicina de Precisão , Distribuição Tecidual , Anticorpos Monoclonais Humanizados/uso terapêutico , Mucinas/imunologia
5.
J Nucl Med ; 65(5): 722-727, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514081

RESUMO

Anti-programmed death 1 (PD-1) inhibitors are the standard of care for advanced gastroesophageal cancer. Although recommendations and approval by regulatory agencies are often based on programmed death ligand 1 (PD-L1) expression, pathologic assessments of PD-L1 status have several limitations. Single-site biopsies do not adequately capture disease heterogeneity within individual tumor lesions or among several lesions within the same patient, the PD-L1 combined positive score is a dynamic biomarker subject to evolution throughout a patient's disease course, and repeated biopsies are invasive and not always feasible. Methods: This was a prospective pilot study of the PD-L1-targeting radiotracer, 18F-BMS-986229, with PET imaging (PD-L1 PET) in patients with gastroesophageal cancer. Patients were administered the 18F-BMS-986229 radiotracer intravenously at a dose of 370 MBq over 1-2 min and underwent whole-body PET/CT imaging 60 min later. The primary objective of this study was to evaluate the safety and feasibility of 18F-BMS-986229. The trial is registered with ClinicalTrials.gov (NCT04161781). Results: Between February 3, 2020, and February 2, 2022, 10 patients with gastroesophageal adenocarcinoma underwent PD-L1 PET. There were no adverse events associated with the 18F-BMS-986229 tracer, and imaging did not result in treatment delays; the primary endpoint was achieved. Radiographic evaluation of PD-L1 expression was concordant with pathologic assessment in 88% of biopsied lesions, and 18F-BMS-986229 uptake on PET imaging correlated with pathologic evaluation by the combined positive score (Spearman rank correlation coefficient, 0.64). Seventy-one percent of patients with 18F-BMS-986229 accumulation on PET imaging also had lesions without 18F-BMS-986229 uptake, highlighting the intrapatient heterogeneity of PD-L1 expression. Patients treated with frontline programmed death 1 inhibitors who had 18F-BMS-986229 accumulation in any lesions on PET imaging had longer progression-free survival than patients without tracer accumulation in any lesions (median progression-free survival, 28.4 vs. 9.9 mo), though the small sample size prevents any definitive conclusions. Conclusion: PD-L1 PET imaging was safe, feasible, and concordant with pathologic evaluation and offers a potential noninvasive tool to assess PD-L1 expression.


Assuntos
Antígeno B7-H1 , Neoplasias Esofágicas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Gástricas , Humanos , Antígeno B7-H1/metabolismo , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/metabolismo , Masculino , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/metabolismo , Feminino , Pessoa de Meia-Idade , Idoso , Projetos Piloto , Radioisótopos de Flúor , Estudos Prospectivos , Adulto
6.
RSC Med Chem ; 15(1): 139-150, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38283233

RESUMO

Overexpression of the human epidermal growth factor receptor 2 (HER2) is found in 20-30% of breast cancer tumors (HER2-positive breast cancers) and is associated with more aggressive onset of disease, higher recurrence rate and increased mortality. Monoclonal antibodies (mAb) like trastuzumab and pertuzumab in combination with chemotherapeutics, and trastuzumab-based antibody drug conjugates (ADCs) are used in the clinic to treat these cancers. An alternative targeted strategy (not yet in clinical use) is the encapsulation of chemotherapeutic drugs in immunoliposomes. Such systems may not only facilitate targeted delivery to the tumor and improve intracellular penetration, but also override some of the resistance developed by tumors in response to cytotoxic loads. As a supplement to classical chemotherapeutics (based on organic compounds and conventional platinum-based derivatives), gold compounds are emerging as potential anticancer agents due to their high cytotoxicity and capacity for immunogenic cell death. Here, we describe the development of immunoliposomes functionalized with trastuzumab and pertuzumab; containing simple gold(i) neutral compounds ([AuCl(PR3)] (PR3 = PPh3 (1), PEt3 (2))) generated by the thin-film method to afford Lipo-1-Lipo-2. Trastuzumab and pertuzumab were engrafted onto these liposomes to generate gold-based immunoliposomes (Immunolipo-Tras-1, Immunolipo-Tras-2, Immunolipo-Per-1, Immunolipo-Per-2). We have characterized all liposomal formulations and demonstrated that the immunoliposomes (190 nm) are stable, have high binding affinity for HER2, and display selective cytotoxicity towards HER2-positive breast cancer cell lines. Trastuzumab-based immunoliposomes of a smaller size (100 nm) - encapsulating [AuCl(PEt3)] (2) - have been generated by an extrusion homogenization method. These optimized immunoliposomes (Opt-Immunolipo-Tras-2) have a trastuzumab engraftment efficiency, encapsulation efficiency for 2, and affinity for HER-2 similar to the immunoliposomes obtained by sonication (Immunolipo-Tras-2). While the amount of Au encapsulated is slightly lower, they display almost identical cytotoxicity and selectivity profiles. Moreover, the fluorescently-labeled phosphane drug [AuCl(PPh2-BODIPY)] (3) was encapsulated in both larger (Immunolipo-Tras-3) and smaller (Opt-Immunolipo-Tras-3) immunoliposomes and used to visualize the intracellular localization of the payload. Fluorescent imaging studies found that Opt-Immunolipo-Tras-3 accumulates in the cells more than 3 and that the unencapsulated payload accumulates primarily in lysosomes, while targeted liposomal 3 localizes in mitochondria and ER, hinting at different possibilities for modes of action.

7.
J Nucl Med ; 65(3): 386-393, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272704

RESUMO

Radioimmunoconjugates targeting human epidermal growth factor receptor 2 (HER2) have shown potential to noninvasively visualize HER2-positive tumors. However, the stochastic approach that has been traditionally used to radiolabel these antibodies yields poorly defined and heterogeneous products with suboptimal in vivo performance. Here, we describe a first-in-human PET study on patients with HER2-positive breast cancer evaluating the safety, biodistribution, and dosimetry of 89Zr-site-specific (ss)-pertuzumab PET, a site-specifically labeled radioimmunoconjugate designed to circumvent the limitations of random stochastic lysine labeling. Methods: Six patients with HER2-positive metastatic breast cancer were enrolled in a prospective clinical trial. Pertuzumab was site-specifically modified with desferrioxamine (DFO) via a novel chemoenzymatic strategy and subsequently labeled with 89Zr. Patients were administered 74 MBq of 89Zr-ss-pertuzumab in 20 mg of total antibody intravenously and underwent PET/CT at 1 d, 3-4 d, and 5-8 d after injection. PET imaging, whole-body probe counts, and blood draws were performed to assess the pharmacokinetics, biodistribution, and dosimetry. Results: 89Zr-ss-pertuzumab PET/CT was used to assess HER2 status and heterogeneity to guide biopsy and decide the next line of treatment at progression. The radioimmunoconjugate was able to detect known sites of malignancy, suggesting that these tumor lesions were HER2-positive. The optimal imaging time point was 5-8 d after administration, and no toxicities were observed. Dosimetry estimates from OLINDA showed that the organs receiving the highest doses (mean ± SD) were kidney (1.8 ± 0.5 mGy/MBq), liver (1.7 ± 0.3 mGy/MBq), and heart wall (1.2 ± 0.1 mGy/MBq). The average effective dose for 89Zr-ss-pertuzumab was 0.54 ± 0.03 mSv/MBq, which was comparable to both stochastically lysine-labeled 89Zr-DFO-pertuzumab and 89Zr-DFO-trastuzumab. One patient underwent PET/CT with both 89Zr-ss-pertuzumab and 89Zr-DFO-pertuzumab 1 mo apart, with 89Zr-ss-pertuzumab demonstrating improved lesion detection and higher tracer avidity. Conclusion: This study demonstrated the safety, dosimetry, and potential clinical applications of 89Zr-ss-pertuzumab PET/CT. 89Zr-ss-pertuzumab may detect more lesions than 89Zr-DFO-pertuzumab. Potential clinical applications include real-time evaluation of HER2 status to guide biopsy and assist in treatment decisions.


Assuntos
Neoplasias da Mama , Imunoconjugados , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Lisina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Distribuição Tecidual , Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoconjugados/uso terapêutico
8.
medRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260492

RESUMO

Background: Delta-like ligand 3 (DLL3) is aberrantly expressed on the cell surface in many neuroendocrine cancers including small cell lung cancer (SCLC) and neuroendocrine prostate cancer (NEPC). Several therapeutic agents targeting DLL3 are in active clinical development. Molecular imaging of DLL3 would enable non-invasive diagnostic assessment to inform the use of DLL3-targeting therapeutics or to assess disease treatment response. Methods: We conducted a first-in-human immuno-positron emission tomography (immunoPET) imaging study of [89Zr]Zr-DFO-SC16.56, composed of the anti-DLL3 antibody SC16.56 conjugated to desferrioxamine (DFO) and the positron-emitting radionuclide zirconium-89, in 18 patients with neuroendocrine cancers. An initial cohort of three patients received 1-2 mCi of [89Zr]Zr-DFO-SC16.56 at a total mass dose of 2·5 mg and underwent serial PET and computed tomography (CT) imaging over the course of one week. Radiotracer clearance, tumor uptake, and radiation dosimetry were estimated. An expansion cohort of 15 additional patients were imaged using the initial activity and mass dose. Retrospectively collected tumor biopsies were assessed for DLL3 by immunohistochemistry (IHC) (n = 16). Findings: Imaging of the initial 3 SCLC patients demonstrated strong tumor-specific uptake of [89Zr]Zr-DFO-SC16.56, with similar tumor: background ratios at days 3, 4, and 7 post-injection. Serum clearance was bi-phasic with an estimated terminal clearance half-time of 119 h. The sites of highest background tracer uptake were blood pool and liver. The normal tissue receiving the highest radiation dose was liver; 1·8 mGy/MBq, and the effective dose was 0.49 mSv/MBq. Tumoral uptake varied both between and within patients, and across anatomic sites, with a wide range in SUVmax (from 3·3 to 66·7). Tumor uptake by [89Zr]Zr-DFO-SC16.56 was associated with protein expression in all cases. Two non-avid DLL3 NEPC cases by PET scanning demonstrated the lowest DLL3 expression by tumor immunohistochemistry. Only one patient had a grade 1 allergic reaction, while no grade ≥2 adverse events noted. Interpretation: DLL3 PET imaging of patients with neuroendocrine cancers is safe and feasible. These results demonstrate the potential utility of [89Zr]Zr-DFO-SC16.56 for non-invasive in vivo detection of DLL3-expressing malignancies. Funding: Supported by NIH R01CA213448 (JTP), R35 CA263816 (CMR), U24 CA213274 (CMR), R35 CA232130 (JSL), and a Prostate Cancer Foundation TACTICAL Award (JSL), Scannell foundation. The Radiochemistry and Molecular Imaging Probes Core Facility is supported by NIH P30 CA08748.

10.
J Nucl Med ; 65(1): 109-116, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37945380

RESUMO

Although pancreatic ductal adenocarcinoma (PDAC) is associated with limited treatment options and poor patient outcomes, targeted α-particle therapy (TAT) represents a promising development in the field. TAT shows potential in treating metastatic cancers, including those that have become resistant to conventional treatments. Among the most auspicious radionuclides stands the in vivo α-generator 212Pb. Combined with the imaging-compatible radionuclide 203Pb, this theranostic match is a promising modality rapidly translating into the clinic. Methods: Using the pretargeting approach between a radiolabeled 1,2,4,5-tetrazine (Tz) tracer and a trans-cyclooctene (TCO) modified antibody, imaging and therapy with radiolead were performed on a PDAC tumor xenograft mouse model. For therapy, 3 cohorts received a single administration of 1.1, 2.2, or 3.7 MBq of the pretargeting agent, [212Pb]Pb-DO3A-PEG7-Tz, whereby administered activity levels were guided by dosimetric analysis. Results: The treated mice were holistically evaluated; minimal-to-mild renal tubular necrosis was observed. At the same time, median survival doubled for the highest-dose cohort (10.7 wk) compared with the control cohort (5.1 wk). Conclusion: This foundational study demonstrated the feasibility and safety of pretargeted TAT with 212Pb in PDAC while considering dose limitations and potential adverse effects.


Assuntos
Neoplasias Pancreáticas , Compostos Radiofarmacêuticos , Humanos , Animais , Camundongos , Compostos Radiofarmacêuticos/uso terapêutico , Chumbo , Medicina de Precisão , Linhagem Celular Tumoral , Radioisótopos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia
11.
ACS Pharmacol Transl Sci ; 6(12): 1972-1986, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38093840

RESUMO

Antibody-drug conjugates (ADCs) combine the selectivity of monoclonal antibodies (mAbs) with the efficacy of chemotherapeutics to target cancers without toxicity to normal tissue. Clinically, most chemotherapeutic ADCs are based on complex organic molecules, while the conjugation of metallodrugs to mAbs has been overlooked, despite the resurgent interest in metal-based drugs as cancer chemotherapeutics. In 2019, we described the first gold ADCs containing gold-triphenylphosphane fragments as a proof of concept. The ADCs (based on the antibody trastuzumab) were selective and highly active against HER2-positive breast cancer cells. In this study, we developed site-specific ADCs (Thio-1b and Thio-2b) using the cysteine-engineered trastuzumab derivative THIOMAB antibody technology with gold(I)-containing phosphanes and a maleimide-based linker amenable to bioconjugation (1b and 2b). In addition, we developed lysine-directed ADCs with gold payloads based on phosphanes and N-heterocyclic carbenes featuring an activated ester moiety (2c and 5c) with trastuzumab (Tras-2c and Tras-5c) and another anti-HER2 antibody, pertuzumab (Per-2c and Per-5c). Both sets of ADCs demonstrated significant anticancer potency in vitro assays. Based on these results, one ADC (Tras-2c), containing the [Au(PEt3)] fragment present in FDA-approved auranofin, was selected for an in vivo antitumor efficacy study. Immunocompromised mice xenografted with the HER2-positive human cancer cell line SKBR-3 exhibited almost complete tumor reduction and low toxicity with intravenous administration of Tras-2c. With this highly selective targeting system, we demonstrated that a subnanomolar cytotoxicity profile in cells is not required for an impressive antitumor effect in a mouse xenograft model.

12.
ACS Omega ; 8(39): 35884-35892, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810678

RESUMO

Previous studies have suggested tumoral caveolin-1 (CAV1) as a predictive biomarker for the response to anti-HER2 antibody drug therapies in gastric tumors. In this study, radiolabeled and fluorescently labeled anti-CAV1 antibodies were developed and tested as an immunoPET or optical imaging agent to detect CAV1 in HER2-positive/CAV1-high NCIN87 gastric tumors. The expression of CAV1 receptors in NCIN87 gastric tumors and nontumor murine organs was determined by Western blot. Binding assays were performed to validate the anti-CAV1 antibody specificity for CAV1-expressing NCIN87 cancer cells. Subcutaneous and orthotopic NCIN87 xenografts were used for PET imaging and ex vivo biodistribution of the radioimmunoconjugate. Additional HER2-PET and CAV1-optical imaging was also performed to determine CAV1 in the HER2-positive tumors. 89Zr-labeled anti-CAV1 antibody was able to bind to CAV1-expressing NCIN87 cells with a Bmax value of 2.7 × 103 CAV1 receptors/cell in vitro. ImmunoPET images demonstrated the localization of the antibody in subcutaneous NCIN87 xenografts. In the orthotopic model, CAV1 expression was also observed by optical imaging in the HER2-positive tumors previously imaged with HER2-PET. Ex vivo biodistribution analysis further confirmed these imaging results. The preclinical data from this study demonstrate the potential of using CAV1-PET and optical imaging for detecting gastric tumors.

13.
Bioconjug Chem ; 34(11): 1925-1950, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37737084

RESUMO

The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.


Assuntos
Azidas , Química Click , Radioquímica , Azidas/química , Compostos Radiofarmacêuticos/química , Reação de Cicloadição , Alcinos/química
14.
J Nucl Med ; 64(10): 1647-1653, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37620049

RESUMO

Shortwave infrared (900-1,700 nm) fluorescence imaging (SWIRFI) has shown significant advantages over visible (400-650 nm) and near-infrared (700-900 nm) fluorescence imaging (reduced autofluorescence, improved contrast, tissue resolution, and depth sensitivity). However, there is a major lag in the clinical translation of preclinical SWIRFI systems and targeted SWIRFI probes. Methods: We preclinically show that the pH low-insertion peptide conjugated to indocyanine green (pHLIP ICG), currently in clinical trials, is an excellent candidate for cancer-targeted SWIRFI. Results: pHLIP ICG SWIRFI achieved picomolar sensitivity (0.4 nM) with binary and unambiguous tumor screening and resection up to 96 h after injection in an orthotopic breast cancer mouse model. SWIRFI tumor screening and resection had ambient light resistance (possible without gating or filtering) with outstanding signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) values at exposures from 10 to 0.1 ms. These SNR and CNR values were also found for the extended emission of pHLIP ICG in vivo (>1,100 nm, 300 ms). Conclusion: SWIRFI sensitivity and ambient light resistance enabled continued tracer clearance tracking with unparalleled SNR and CNR values at video rates for tumor delineation (achieving a tumor-to-muscle ratio above 20). In total, we provide a direct precedent for the democratic translation of an ambient light resistant SWIRFI and pHLIP ICG ecosystem, which can instantly improve tumor resection.


Assuntos
Verde de Indocianina , Neoplasias , Animais , Camundongos , Ecossistema , Imagem Óptica/métodos
15.
ACS Omega ; 8(25): 22486-22495, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396228

RESUMO

Multiple myeloma (MM) is the second most prevalent hematological malignancy. It remains incurable despite the availability of novel therapeutic approaches, marking an urgent need for new agents for noninvasive targeted imaging of MM lesions. CD38 has proven to be an excellent biomarker due to its high expression in aberrant lymphoid and myeloid cells relative to normal cell populations. Using isatuximab (Sanofi), the latest FDA-approved CD38-targeting antibody, we have developed Zirconium-89(89Zr)-labeled isatuximab as a novel immunoPET tracer for the in vivo delineation of MM and evaluated the extension of its applicability to lymphomas. In vitro studies validated the high binding affinity and specificity of 89Zr-DFO-isatuximab for CD38. PET imaging demonstrated the high performance of 89Zr-DFO-isatuximab as a targeted imaging agent to delineate tumor burden in disseminated models of MM and Burkitt's lymphoma. Ex vivo biodistribution studies confirmed that high accumulations of the tracer in bone marrow and bone skeleton correspond to specific disease lesions as they are reduced to background in blocking and healthy controls. This work demonstrates the promise of 89Zr-DFO-isatuximab as an immunoPET tracer for CD38-targeted imaging of MM and certain lymphomas. More importantly, its potential as an alternative to 89Zr-DFO-daratumumab holds great clinical relevance.

16.
Clin Cancer Res ; 29(18): 3633-3640, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406106

RESUMO

PURPOSE: We report updated clinical outcomes from a phase II study of pembrolizumab, trastuzumab, and chemotherapy (PTC) in metastatic esophagogastric cancer in conjunction with outcomes from an independent Memorial Sloan Kettering (MSK) cohort. PATIENTS AND METHODS: The significance of pretreatment 89Zr-trastuzumab PET, plasma circulating tumor DNA (ctDNA) dynamics, and tumor HER2 expression and whole exome sequencing was evaluated to identify prognostic biomarkers and mechanisms of resistance in patients treated on-protocol with PTC. Additional prognostic features were evaluated using a multivariable Cox regression model of trastuzumab-treated MSK patients (n = 226). Single-cell RNA sequencing (scRNA-seq) data from MSK and Samsung were evaluated for mechanisms of therapy resistance. RESULTS: 89Zr-trastuzumab PET, scRNA-seq, and serial ctDNA with CT imaging identified how pre-treatment intrapatient genomic heterogeneity contributes to inferior progression-free survival (PFS). We demonstrated that the presence of intensely avid lesions by 89Zr-trastuzumab PET declines in tumor-matched ctDNA by 3 weeks, and clearance of tumor-matched ctDNA by 9 weeks were minimally invasive biomarkers of durable PFS. Paired pre- and on-treatment scRNA-seq identified rapid clearance of HER2-expressing tumor clones with expansion of clones expressing a transcriptional resistance program, which was associated with MT1H, MT1E, MT2A, and MSMB expression. Among trastuzumab-treated patients at MSK, ERBB2 amplification was associated with improved PFS, while alterations in MYC and CDKN2A/B were associated with inferior PFS. CONCLUSIONS: These findings highlight the clinical relevance of identifying baseline intrapatient heterogeneity and serial ctDNA monitoring of HER2-positive esophagogastric cancer patients to identify early evidence of treatment resistance, which could guide proactive therapy escalation or deescalation.


Assuntos
Neoplasias da Mama , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Feminino , Receptor ErbB-2/metabolismo , Receptor de Morte Celular Programada 1/uso terapêutico , Radioisótopos/uso terapêutico , Zircônio , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/induzido quimicamente , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Trastuzumab/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
17.
J Nucl Med ; 64(10): 1638-1646, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37385676

RESUMO

The human epidermal growth factor receptor 2 (HER2)-targeting trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd) are antibody-drug conjugates (ADC) clinically used to treat HER2-positive breast cancer, with the latter receiving clinical approval in 2021 for HER2-positive gastric cancer. Lovastatin, a cholesterol-lowering drug, temporally elevates cell-surface HER2 in ways that enhance HER2-ADC binding and internalization. Methods: In an NCIN87 gastric xenograft model and a gastric patient-derived xenograft model, we used the 89Zr-labeled or 64Cu-labeled anti-HER2 antibody trastuzumab to investigate the dosing regimen of ADC therapy with and without coadministration of lovastatin. We compared the ADC efficacy of a multiple-dose ADC regime, which replicates the clinical dose regimen standard, with a single-dose regime. Results: T-DM1/lovastatin treatment inhibited tumor growth, regardless of multiple- or single-dose T-DM1 administration. Coadministration of lovastatin with T-DM1 or T-DXd as a single dose enhanced tumor growth inhibition, which was accompanied by a decrease in signal on HER2-targeted immuno-PET and a decrease in HER2-mediated signaling at the cellular level. DNA damage signaling was increased on ADC treatment in vitro. Conclusion: Our data from a gastric cancer xenograft show the utility of HER2-targeted immuno-PET to inform the tumor response to ADC therapies in combination with modulators of cell-surface target availability. Our studies also demonstrate that statins enhance ADC efficacy in both a cell-line and a patient-derived xenograft model in ways that enable a single-dose administration of the ADC.


Assuntos
Neoplasias da Mama , Inibidores de Hidroximetilglutaril-CoA Redutases , Imunoconjugados , Neoplasias Gástricas , Humanos , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Linhagem Celular Tumoral , Trastuzumab , Ado-Trastuzumab Emtansina/farmacologia , Ado-Trastuzumab Emtansina/uso terapêutico , Receptor ErbB-2/metabolismo , Neoplasias da Mama/patologia , Imunoconjugados/uso terapêutico , Tomografia por Emissão de Pósitrons , Lovastatina/farmacologia , Lovastatina/uso terapêutico
18.
J Am Chem Soc ; 145(26): 14276-14287, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339504

RESUMO

We report an innovative approach to producing bacteriochlorins (bacs) via formal cycloaddition by subjecting a porphyrin to a trimolecular reaction. Bacs are near-infrared probes with the intrinsic ability to serve in multimodal imaging. However, despite their ability to fluoresce and chelate metal ions, existing bacs have thus offered limited ability to label biomolecules for target specificity or have lacked chemical purity, limiting their use in bio-imaging. In this work, bacs allowed a precise and controlled appending of clickable linkers, lending the porphyrinoids substantially more chemical stability, clickability, and solubility, rendering them more suitable for preclinical investigation. Our bac probes enable the targeted use of biomolecules in fluorescence imaging and Cerenkov luminescence for guided intraoperative imaging. Bacs' capacity for chelation provides opportunities for use in non-invasive positron emission tomography/computed tomography. Herein, we report the labeling of bacs with Hs1a, a (NaV1.7)-sodium-channel-binding peptide derived from the Chinese tarantula Cyriopagopus schmidti to yield Bac-Hs1a and radiolabeled Hs1a, which shuttles our bac sensor(s) to mouse nerves. In vivo, the bac sensor allowed us to observe high signal-to-background ratios in the nerves of animals injected with fluorescent Bac-Hs1a and radiolabeled Hs1a in all imaging modes. This study demonstrates that Bac-Hs1a and [64Cu]Cu-Bac-Hs1a accumulate in peripheral nerves, providing contrast and utility in the preclinical space. For the chemistry and bio-imaging fields, this study represents an exciting starting point for the modular manipulation of bacs, their development and use as probes for diagnosis, and their deployment as formidable multiplex nerve-imaging agents for use in routine imaging experiments.


Assuntos
Porfirinas , Animais , Camundongos
19.
Nat Protoc ; 18(6): 1659-1668, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37100960

RESUMO

The 2022 Nobel Prize in Chemistry was awarded to Professors K. Barry Sharpless, Morten Meldal and Carolyn Bertozzi for their pioneering roles in the advent of click chemistry. Sharpless and Meldal worked to develop the canonical click reaction-the copper-catalyzed azide-alkyne cycloaddition-while Bertozzi opened new frontiers with the creation of the bioorthogonal strain-promoted azide-alkyne cycloaddition. These two reactions have revolutionized chemical and biological science by facilitating selective, high yielding, rapid and clean ligations and by providing unprecedented ways to manipulate living systems. Click chemistry has affected every aspect of chemistry and chemical biology, but few disciplines have been impacted as much as radiopharmaceutical chemistry. The importance of speed and selectivity in radiochemistry make it an almost tailor-made application of click chemistry. In this Perspective, we discuss the ways in which the copper-catalyzed azide-alkyne cycloaddition, the strain-promoted azide-alkyne cycloaddition and a handful of 'next-generation' click reactions have transformed radiopharmaceutical chemistry, both as tools for more efficient radiosyntheses and as linchpins of technologies that have the potential to improve nuclear medicine.


Assuntos
Química Click , Medicina Nuclear , Química Click/métodos , Cobre , Compostos Radiofarmacêuticos , Azidas , Alcinos , Reação de Cicloadição
20.
Nat Cancer ; 4(5): 699-715, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37038004

RESUMO

Tumor expression of prostate-specific membrane antigen (PSMA) is lost in 15-20% of men with castration-resistant prostate cancer (CRPC), yet the underlying mechanisms remain poorly defined. In androgen receptor (AR)-positive CRPC, we observed lower PSMA expression in liver lesions versus other sites, suggesting a role of the microenvironment in modulating PSMA. PSMA suppression was associated with promoter histone 3 lysine 27 methylation and higher levels of neutral amino acid transporters, correlating with 18F-fluciclovine uptake on positron emission tomography imaging. While PSMA is regulated by AR, we identified a subset of AR-negative CRPC with high PSMA. HOXB13 and AR co-occupancy at the PSMA enhancer and knockout models point to HOXB13 as an upstream regulator of PSMA in AR-positive and AR-negative prostate cancer. These data demonstrate how PSMA expression is differentially regulated across metastatic lesions and in the context of the AR, which may inform selection for PSMA-targeted therapies and development of complementary biomarkers.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Próstata/metabolismo , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...