Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
BMC Med ; 22(1): 140, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528552

RESUMO

BACKGROUND: It is well-established that parental obesity is a strong risk factor for offspring obesity. Further, a converging body of evidence now suggests that maternal weight profiles may affect the developing offspring's brain in a manner that confers future obesity risk. Here, we investigated how pre-pregnancy maternal weight status influences the reward-related striatal areas of the offspring's brain during in utero development. METHODS: We used diffusion tensor imaging to quantify the microstructure of the striatal brain regions of interest in neonates (N = 116 [66 males, 50 females], mean gestational weeks at birth [39.88], SD = 1.14; at scan [43.56], SD = 1.05). Linear regression was used to test the associations between maternal pre-pregnancy body mass index (BMI) and infant striatal mean diffusivity. RESULTS: High maternal pre-pregnancy BMI was associated with higher mean MD values in the infant's left caudate nucleus. Results remained unchanged after the adjustment for covariates. CONCLUSIONS: In utero exposure to maternal adiposity might have a growth-impairing impact on the mean diffusivity of the infant's left caudate nucleus. Considering the involvement of the caudate nucleus in regulating eating behavior and food-related reward processing later in life, this finding calls for further investigations to define the prognostic relevance of early-life caudate nucleus development and weight trajectories of the offspring.


Assuntos
Imagem de Tensor de Difusão , Obesidade , Masculino , Lactente , Recém-Nascido , Gravidez , Feminino , Humanos , Índice de Massa Corporal , Obesidade/complicações , Fatores de Risco , Mães
2.
Hum Brain Mapp ; 45(5): e26584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533724

RESUMO

Recent studies have shown that white-gray contrast (WGC) of either cortical or subcortical gray matter provides for accurate predictions of age in typically developing (TD) children, and that, at least for the cortex, it changes differently with age in subjects with autism spectrum disorder (ASD) compared to their TD peers. Our previous study showed different patterns of contrast change between ASD and TD in sensorimotor and association cortices. While that study was confined to the cortex, we hypothesized that subcortical structures, particularly the thalamus, were involved in the observed cortical dichotomy between lower and higher processing. The current paper investigates that hypothesis using the WGC measures from the thalamus in addition to those from the cortex. We compared age-related WGC changes in the thalamus to those in the cortex. To capture the simultaneity of this change across the two structures, we devised a metric capturing the co-development of the thalamus and cortex (CoDevTC), proportional to the magnitude of cortical and thalamic age-related WGC change. We calculated this metric for each of the subjects in a large homogeneous sample taken from the Autism Brain Imaging Data Exchange (ABIDE) (N = 434). We used structural MRI data from the largest high-quality cross-sectional sample (NYU) as well as two other large high-quality sites, GU and OHSU, all three using Siemens 3T scanners. We observed that the co-development features in ASD and TD exhibit contrasting patterns; specifically, some higher-order thalamic nuclei, such as the lateral dorsal nucleus, exhibited reduction in codevelopment with most of the cortex in ASD compared to TD. Moreover, this difference in the CoDevTC pattern correlates with a number of behavioral measures across multiple cognitive and physiological domains. The results support previous notions of altered connectivity in autism, but add more specific evidence about the heterogeneity in thalamocortical development that elucidates the mechanisms underlying the clinical features of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Estudos Transversais , Tálamo , Imageamento por Ressonância Magnética
3.
Res Sq ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260442

RESUMO

Cells migrating in confinement experience mechanical challenges whose consequences on cell migration machinery remain only partially understood. Here, we demonstrate that a pool of the cytokinesis regulatory protein anillin is retained during interphase in the cytoplasm of different cell types. Confinement induces recruitment of cytoplasmic anillin to plasma membrane at the poles of migrating cells, which is further enhanced upon nuclear envelope (NE) rupture(s). Rupture events also enable the cytoplasmic egress of predominantly nuclear RhoGEF Ect2. Anillin and Ect2 redistributions scale with microenvironmental stiffness and confinement, and are observed in confined cells in vitro and in invading tumor cells in vivo. Anillin, which binds actomyosin at the cell poles, and Ect2, which activates RhoA, cooperate additively to promote myosin II contractility, and promote efficient invasion and extravasation. Overall, our work provides a mechanistic understanding of how cytokinesis regulators mediate RhoA/ROCK/myosin II-dependent mechanoadaptation during confined migration and invasive cancer progression.

4.
Front Oncol ; 13: 1244709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700826

RESUMO

Traditional external light-based Photodynamic Therapy (PDT)'s application is limited to the surface and minimal thickness tumors because of the inefficiency of light in penetrating deep-seated tumors. To address this, the emerging field of radiation-activated PDT (radioPDT) uses X-rays to trigger photosensitizer-containing nanoparticles (NPs). A key consideration in radioPDT is the energy transfer efficiency from X-rays to the photosensitizer for ultimately generating the phototoxic reactive oxygen species (ROS). In this study, we developed a new variant of pegylated poly-lactic-co-glycolic (PEG-PLGA) encapsulated nanoscintillators (NSCs) along with a new, highly efficient ruthenium-based photosensitizer (Ru/radioPDT). Characterization of this NP via transmission electron microscopy, dynamic light scattering, UV-Vis spectroscopy, and inductively coupled plasma mass-spectroscopy showed an NP size of 120 nm, polydispersity index (PDI) of less than 0.25, high NSCs loading efficiency over 90% and in vitro accumulation within the cytosolic structure of endoplasmic reticulum and lysosome. The therapeutic efficacy of Ru/radioPDT was determined using PC3 cell viability and clonogenic assays. Ru/radioPDT exhibited minimal cell toxicity until activated by radiation to induce significant cancer cell kill over radiation alone. Compared to protoporphyrin IX-mediated radioPDT (PPIX/radioPDT), Ru/radioPDT showed higher capacity for singlet oxygen generation, maintaining a comparable cytotoxic effect on PC3 cells.

5.
Eur J Neurosci ; 58(8): 3827-3837, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37641861

RESUMO

Diffusion tensor imaging (DTI) has been used to study the developing brain in early childhood, infants and in utero studies. In infants, number of used diffusion encoding directions has traditionally been smaller in earlier studies down to the minimum of 6 orthogonal directions. Whereas the more recent studies often involve more directions, number of used directions remain an issue when acquisition time is optimized without compromising on data quality and in retrospective studies. Variability in the number of used directions may introduce bias and uncertainties to the DTI scalar estimates that affect cross-sectional and longitudinal study of the brain. We analysed DTI images of 133 neonates, each data having 54 directions after quality control, to evaluate the effect of number of diffusion weighting directions from 6 to 54 with interval of 6 to the DTI scalars with Tract-Based Spatial Statistics (TBSS) analysis. The TBSS analysis was applied to DTI scalar maps, and the mean region of interest (ROI) values were extracted using JHU atlas. We found significant bias in ROI mean values when only 6 directions were used (positive in fractional anisotropy [FA] and negative in fractional anisotropy [MD], axial diffusivity [AD] and fractional anisotropy [RD]), while when using 24 directions and above, the difference to scalar values calculated from 54 direction DTI was negligible. In repeated measures voxel-wise analysis, notable differences to 54 direction DTI were observed with 6, 12 and 18 directions. DTI measurements from data with at least 24 directions may be used in comparisons with DTI measurements from data with higher numbers of directions.

6.
Hum Brain Mapp ; 44(14): 4914-4926, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516915

RESUMO

Blood-flow artifacts present a serious challenge for most, if not all, volumetric analytical approaches. We utilize T1-weighted data with prominent blood-flow artifacts from the Autism Brain Imaging Data Exchange (ABIDE) multisite agglomerative dataset to assess the impact that such blood-flow artifacts have on registration of T1-weighted data to a template. We use a heuristic approach to identify the blood-flow artifacts in these data; we use the resulting blood masks to turn the underlying voxels to the intensity of the cerebro-spinal fluid, thus mimicking the effect of blood suppression. We then register both the original data and the deblooded data to a common T1-weighted template, and compare the quality of those registrations to the template in terms of similarity to the template. The registrations to the template based on the deblooded data yield significantly higher similarity values compared with those based on the original data. Additionally, we measure the nonlinear deformations needed to transform the data from the position achieved by registering the original data to the template to the position achieved by registering the deblooded data to the template. The results indicate that blood-flow artifacts may seriously impact data processing that depends on registration to a template, that is, most all data processing.


Assuntos
Transtorno Autístico , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
7.
Cytometry A ; 103(8): 670-683, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37314191

RESUMO

Optimization of flow cytometry assays for extracellular vesicles (EVs) often fail to include appropriate reagent titrations - the most critically antibody titration is either not performed or is incomplete. Using nonoptimal antibody concentration is one of the main sources of error leading to a lack of reproducible data. Antibody titration for the analysis of antigens on the surface of EVs is challenging for a variety of technical reasons. Using platelets as surrogates for cells and platelet-derived particles as surrogates for EV populations, we demonstrate our process for antibody titration, highlighting some of the key analysis parameters that may confound and surprise new researchers moving into the field of EV research. Additional care must be exercised to ensure instrument and reagent controls are utilized appropriately. Complete graphical analysis of positive and negative signal intensities, concentration, and separation or stain index data is highly beneficial when paired with visual analysis of the cytometry data. Using analytical flow cytometry procedures optimized for cells for EV analysis can lead to misleading and nonreproducible results.


Assuntos
Vesículas Extracelulares , Plaquetas , Citometria de Fluxo/métodos , Corantes
8.
Cancer Med ; 12(15): 15797-15808, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37329212

RESUMO

BACKGROUND: There is an unmet clinical need for minimally invasive diagnostic tests to improve the detection of grade group (GG) ≥3 prostate cancer relative to prostate antigen-specific risk calculators. We determined the accuracy of the blood-based extracellular vesicle (EV) biomarker assay (EV Fingerprint test) at the point of a prostate biopsy decision to predict GG ≥3 from GG ≤2 and avoid unnecessary biopsies. METHODS: This study analyzed 415 men referred to urology clinics and scheduled for a prostate biopsy, were recruited to the APCaRI 01 prospective cohort study. The EV machine learning analysis platform was used to generate predictive EV models from microflow data. Logistic regression was then used to analyze the combined EV models and patient clinical data and generate the patients' risk score for GG ≥3 prostate cancer. RESULTS: The EV-Fingerprint test was evaluated using the area under the curve (AUC) in discrimination of GG ≥3 from GG ≤2 and benign disease on initial biopsy. EV-Fingerprint identified GG ≥3 cancer patients with high accuracy (0.81 AUC) at 95% sensitivity and 97% negative predictive value. Using a 7.85% probability cutoff, 95% of men with GG ≥3 would have been recommended a biopsy while avoiding 144 unnecessary biopsies (35%) and missing four GG ≥3 cancers (5%). Conversely, a 5% cutoff would have avoided 31 unnecessary biopsies (7%), missing no GG ≥3 cancers (0%). CONCLUSIONS: EV-Fingerprint accurately predicted GG ≥3 prostate cancer and would have significantly reduced unnecessary prostate biopsies.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Antígeno Prostático Específico , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Biópsia , Vesículas Extracelulares/patologia
9.
Biol Psychiatry ; 94(12): 924-935, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37220833

RESUMO

BACKGROUND: Prenatal and postnatal maternal psychological distress predicts various detrimental consequences on social, behavioral, and cognitive development of offspring, especially in girls. Maturation of white matter (WM) continues from prenatal development into adulthood and is thus susceptible to exposures both before and after birth. METHODS: WM microstructural features of 130 children (mean age, 5.36 years; range, 5.04-5.79 years; 63 girls) and their association with maternal prenatal and postnatal depressive and anxiety symptoms were investigated with diffusion tensor imaging, tract-based spatial statistics, and regression analyses. Maternal questionnaires were collected during first, second, and third trimesters and at 3, 6, and 12 months postpartum with the Edinburgh Postnatal Depression Scale (EPDS) for depressive symptoms and Symptom Checklist-90 for general anxiety. Covariates included child's sex; child's age; maternal prepregnancy body mass index; maternal age; socioeconomic status; and exposures to smoking, selective serotonin reuptake inhibitors, and synthetic glucocorticoids during pregnancy. RESULTS: Prenatal second-trimester EPDS scores were positively associated with fractional anisotropy in boys (p < .05, 5000 permutations) after controlling for EPDS scores 3 months postpartum. In contrast, postpartum EPDS scores at 3 months correlated negatively with fractional anisotropy (p < .01, 5000 permutations) in widespread areas only in girls after controlling for prenatal second-trimester EPDS scores. Perinatal anxiety was not associated with WM structure. CONCLUSIONS: These results suggest that prenatal and postnatal maternal psychological distress is associated with brain WM tract developmental alterations in a sex- and timing-dependent manner. Future studies including behavioral data are required to consolidate associative outcomes for these alterations.


Assuntos
Depressão Pós-Parto , Substância Branca , Masculino , Gravidez , Feminino , Criança , Humanos , Pré-Escolar , Depressão/diagnóstico por imagem , Depressão/psicologia , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Depressão Pós-Parto/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mães/psicologia
10.
Dev Psychopathol ; : 1-16, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009666

RESUMO

Prenatal adversity has been linked to later psychopathology. Yet, research on cumulative prenatal adversity, as well as its interaction with offspring genotype, on brain and behavioral development is scarce. With this study, we aimed to address this gap. In Finnish mother-infant dyads, we investigated the association of a cumulative prenatal adversity sum score (PRE-AS) with (a) child emotional and behavioral problems assessed with the Strengths and Difficulties Questionnaire at 4 and 5 years (N = 1568, 45.3% female), (b) infant amygdalar and hippocampal volumes (subsample N = 122), and (c) its moderation by a hippocampal-specific coexpression polygenic risk score based on the serotonin transporter (SLC6A4) gene. We found that higher PRE-AS was linked to greater child emotional and behavioral problems at both time points, with partly stronger associations in boys than in girls. Higher PRE-AS was associated with larger bilateral infant amygdalar volumes in girls compared to boys, while no associations were found for hippocampal volumes. Further, hyperactivity/inattention in 4-year-old girls was related to both genotype and PRE-AS, the latter partially mediated by right amygdalar volumes as preliminary evidence suggests. Our study is the first to demonstrate a dose-dependent sexually dimorphic relationship between cumulative prenatal adversity and infant amygdalar volumes.

11.
Eur J Neurosci ; 57(10): 1671-1688, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37042051

RESUMO

Exposures to prenatal maternal depressive symptoms (PMDS) may lead to neurodevelopmental changes in the offspring in a sex-dependent way. Although a connection between PMDS and infant brain development has been established by earlier studies, the relationship between PMDS exposures measured at various prenatal stages and microstructural alterations in fundamental subcortical structures such as the amygdala remains unknown. In this study, we investigated the associations between PMDS measured during gestational weeks 14, 24 and 34 and infant amygdala microstructural properties using diffusion tensor imaging. We explored amygdala mean diffusivity (MD) alterations in response to PMDS in infants aged 11 to 54 days from birth. PMDS had no significant main effect on the amygdala MD metrics. However, there was a significant interaction effect for PMDS and infant sex in the left amygdala MD. Compared with girls, boys exposed to greater PMDS during gestational week 14 showed significantly higher left amygdala MD. These results indicate that PMDS are linked to infants' amygdala microstructure in boys. These associations may be relevant to later neuropsychiatric outcomes in the offspring. Further research is required to better understand the mechanisms underlying these associations and to develop effective interventions to counteract any potential adverse consequences.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Recém-Nascido , Masculino , Lactente , Feminino , Gravidez , Humanos , Imagem de Tensor de Difusão/métodos , Depressão/diagnóstico por imagem , Tonsila do Cerebelo/diagnóstico por imagem , Encéfalo , Imagem de Difusão por Ressonância Magnética
12.
Hum Brain Mapp ; 44(7): 2712-2725, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946076

RESUMO

The rapid white matter (WM) maturation of first years of life is followed by slower yet long-lasting development, accompanied by learning of more elaborate skills. By the age of 5 years, behavioural and cognitive differences between females and males, and functions associated with brain lateralization such as language skills are appearing. Diffusion tensor imaging (DTI) can be used to quantify fractional anisotropy (FA) within the WM and increasing values correspond to advancing brain development. To investigate the normal features of WM development during early childhood, we gathered a DTI data set of 166 healthy infants (mean 3.8 wk, range 2-5 wk; 89 males; born on gestational week 36 or later) and 144 healthy children (mean 5.4 years, range 5.1-5.8 years; 76 males). The sex differences, lateralization patterns and age-dependent changes were examined using tract-based spatial statistics (TBSS). In 5-year-olds, females showed higher FA in wide-spread regions in the posterior and the temporal WM and more so in the right hemisphere, while sex differences were not detected in infants. Gestational age showed stronger association with FA values compared to age after birth in infants. Additionally, child age at scan associated positively with FA around the age of 5 years in the body of corpus callosum, the connections of which are important especially for sensory and motor functions. Lastly, asymmetry of WM microstructure was detected already in infants, yet significant changes in lateralization pattern seem to occur during early childhood, and in 5-year-olds the pattern already resembles adult-like WM asymmetry.


Assuntos
Substância Branca , Adulto , Criança , Humanos , Lactente , Masculino , Feminino , Pré-Escolar , Imagem de Tensor de Difusão/métodos , Caracteres Sexuais , Encéfalo , Idade Gestacional
13.
Viruses ; 15(2)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851770

RESUMO

Thymic stromal lymphopoietin (TSLP) is an epithelium-derived pro-inflammatory cytokine involved in lung inflammatory responses. Previous studies show conflicting observations in blood TSLP in COVID-19, while none report SARS-CoV-2 inducing TSLP expression in bronchial epithelial cells. Our objective in this study was to determine whether TSLP levels increase in COVID-19 patients and if SARS-CoV-2 induces TSLP expression in bronchial epithelial cells. Plasma cytokine levels were measured in patients hospitalized with confirmed COVID-19 and age- and sex-matched healthy controls. Demographic and clinical information from COVID-19 patients was collected. We determined associations between plasma TSLP and clinical parameters using Poisson regression. Cultured human nasal (HNEpC) and bronchial epithelial cells (NHBEs), Caco-2 cells, and patient-derived bronchial epithelial cells (HBECs) obtained from elective bronchoscopy were infected in vitro with SARS-CoV-2, and secretion as well as intracellular expression of TSLP was detected by immunofluorescence. Increased TSLP levels were detected in the plasma of hospitalized COVID-19 patients (603.4 ± 75.4 vs 997.6 ± 241.4 fg/mL, mean ± SEM), the levels of which correlated with duration of stay in hospital (ß: 0.11; 95% confidence interval (CI): 0.01-0.21). In cultured NHBE and HBECs but not HNEpCs or Caco-2 cells, TSLP levels were significantly elevated after 24 h post-infection with SARS-CoV-2 (p < 0.001) in a dose-dependent manner. Plasma TSLP in COVID-19 patients significantly correlated with duration of hospitalization, while SARS-CoV-2 induced TSLP secretion from bronchial epithelial cells in vitro. Based on our findings, TSLP may be considered an important therapeutic target for COVID-19 treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Linfopoietina do Estroma do Timo , Tempo de Internação , Células CACO-2 , Tratamento Farmacológico da COVID-19 , Citocinas
14.
J Cell Sci ; 136(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621522

RESUMO

Wnt signalling has been implicated as a driver of tumour cell metastasis, but less is known about which branches of Wnt signalling are involved and when they act in the metastatic cascade. Here, using a unique intravital imaging platform and fluorescent reporters, we visualised ß-catenin/TCF-dependent and ATF2-dependent signalling activities during human cancer cell invasion, intravasation and metastatic lesion formation in the chick embryo host. We found that cancer cells readily shifted between states of low and high canonical Wnt activity. Cancer cells that displayed low Wnt canonical activity showed higher invasion and intravasation potential in primary tumours and in metastatic lesions. In contrast, cancer cells showing low ATF2-dependent activity were significantly less invasive both at the front of primary tumours and in metastatic lesions. Simultaneous visualisation of both these reporters using a double-reporter cell line confirmed their complementary activities in primary tumours and metastatic lesions. These findings might inform the development of therapies that target different branches of Wnt signalling at specific stages of metastasis.


Assuntos
Neoplasias , beta Catenina , Animais , Embrião de Galinha , Humanos , beta Catenina/metabolismo , Via de Sinalização Wnt , Neoplasias/genética , Linhagem Celular Tumoral , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo
15.
ACS Earth Space Chem ; 7(1): 252-259, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36704180

RESUMO

Aerosols are abundant on the Earth and likely played a role in prebiotic chemistry. Aerosol particles coagulate, divide, and sample a wide variety of conditions conducive to synthesis. While much work has centered on the generation of aerosols and their chemistry, little effort has been expended on their fate after settling. Here, using a laboratory model, we show that aqueous aerosols transform into cell-sized protocellular structures upon entry into aqueous solution containing lipid. Such processes provide for a heretofore unexplored pathway for the assembly of the building blocks of life from disparate geochemical regions within cell-like vesicles with a lipid bilayer in a manner that does not lead to dilution. The efficiency of aerosol to vesicle transformation is high with prebiotically plausible lipids, such as decanoic acid and decanol, that were previously shown to be capable of forming growing and dividing vesicles. The high transformation efficiency with 10-carbon lipids in landing solutions is consistent with the surface properties and dynamics of short-chain lipids. Similar processes may be operative today as fatty acids are common constituents of both contemporary aerosols and the sea. Our work highlights a new pathway that may have facilitated the emergence of the Earth's first cells.

16.
Mol Oncol ; 17(3): 407-421, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36520580

RESUMO

Extracellular vesicles (EVs) are highly abundant in human biofluids, containing a repertoire of macromolecules and biomarkers representative of the tissue of origin. EVs released by tumours can communicate key signals both locally and to distant sites to promote growth and survival or impact invasive and metastatic progression. Microscale flow cytometry of circulating EVs is an emerging technology that is a promising alternative to biopsy for disease diagnosis. However, biofluid-derived EVs are highly heterogeneous in size and composition, making their analysis complex. To address this, we developed a machine learning approach combined with EV microscale cytometry using tissue- and disease-specific biomarkers to generate predictive models. We demonstrate the utility of this novel extracellular vesicle machine learning analysis platform (EVMAP) to predict disease from patient samples by developing a blood test to identify high-grade prostate cancer and validate its performance in a prospective 215 patient cohort. Models generated using the EVMAP approach significantly improved the prediction of high-risk prostate cancer, highlighting the clinical utility of this diagnostic platform for improved cancer prediction from a blood test.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Masculino , Humanos , Citometria de Fluxo , Estudos Prospectivos , Biomarcadores , Neoplasias da Próstata/patologia
17.
Nature ; 611(7935): 365-373, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323783

RESUMO

Cells respond to physical stimuli, such as stiffness1, fluid shear stress2 and hydraulic pressure3,4. Extracellular fluid viscosity is a key physical cue that varies under physiological and pathological conditions, such as cancer5. However, its influence on cancer biology and the mechanism by which cells sense and respond to changes in viscosity are unknown. Here we demonstrate that elevated viscosity counterintuitively increases the motility of various cell types on two-dimensional surfaces and in confinement, and increases cell dissemination from three-dimensional tumour spheroids. Increased mechanical loading imposed by elevated viscosity induces an actin-related protein 2/3 (ARP2/3)-complex-dependent dense actin network, which enhances Na+/H+ exchanger 1 (NHE1) polarization through its actin-binding partner ezrin. NHE1 promotes cell swelling and increased membrane tension, which, in turn, activates transient receptor potential cation vanilloid 4 (TRPV4) and mediates calcium influx, leading to increased RHOA-dependent cell contractility. The coordinated action of actin remodelling/dynamics, NHE1-mediated swelling and RHOA-based contractility facilitates enhanced motility at elevated viscosities. Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4-dependent mechanical memory through transcriptional control of the Hippo pathway, leading to increased migration in zebrafish, extravasation in chick embryos and lung colonization in mice. Cumulatively, extracellular viscosity is a physical cue that regulates both short- and long-term cellular processes with pathophysiological relevance to cancer biology.


Assuntos
Movimento Celular , Líquido Extracelular , Metástase Neoplásica , Neoplasias , Viscosidade , Animais , Embrião de Galinha , Camundongos , Actinas/metabolismo , Líquido Extracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Trocadores de Sódio-Hidrogênio/metabolismo , Canais de Cátion TRPV , Peixe-Zebra/metabolismo , Metástase Neoplásica/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Via de Sinalização Hippo , Esferoides Celulares/patologia , Complexo 2-3 de Proteínas Relacionadas à Actina , Proteína rhoA de Ligação ao GTP , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pulmão/patologia
18.
Cancers (Basel) ; 14(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36358595

RESUMO

While chemotherapy is a key treatment strategy for many solid tumors, it is rarely curative, and most tumor cells eventually become resistant. Because of this, there is an unmet need to develop systemic treatments that capitalize on the unique mutational landscape of each patient's tumor. The most frequently mutated protein in cancer, p53, has a role in nearly all cancer subtypes and tumorigenesis stages and therefore is one of the most promising molecular targets for cancer treatment. Unfortunately, drugs targeting p53 have seen little clinical success despite promising preclinical data. Most of these drug compounds target specific aspects of p53 inactivation, such as through inhibiting negative regulation by the mouse double minute (MDM) family of proteins. These treatment strategies fail to address cancer cells' adaptation mechanisms and ignore the impact that p53 loss has on the entire p53 network. However, recent gene therapy successes show that targeting the p53 network and cellular dysfunction caused by p53 inactivation is now possible and may soon translate into successful clinical responses. In this review, we discuss p53 signaling complexities in cancer that have hindered the development and use of p53-targeted drugs. We also describe several current therapeutics reporting promising preclinical and clinical results.

19.
Front Cell Dev Biol ; 10: 896297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268513

RESUMO

Metastasis is the primary cause of cancer patient death and the elevation of SLC2A5 gene expression is often observed in metastatic cancer cells. Here we evaluated the importance of SLC2A5 in cancer cell motility by silencing its gene. We discovered that CRISPR/Cas9-mediated inactivation of the SLC2A5 gene inhibited cancer cell proliferation and migration in vitro as well as metastases in vivo in several animal models. Moreover, SLC2A5-attenuated cancer cells exhibited dramatic alterations in mitochondrial architecture and localization, uncovering the importance of SLC2A5 in directing mitochondrial function for cancer cell motility and migration. The direct association of increased abundance of SLC2A5 in cancer cells with metastatic risk in several types of cancers identifies SLC2A5 as an important therapeutic target to reduce or prevent cancer metastasis.

20.
Nat Commun ; 13(1): 6128, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253369

RESUMO

Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive. Here, we demonstrate that NHE1 and SWELL1 preferentially polarize at the cell leading and trailing edges, respectively, mediate cell volume regulation, cell dissemination from spheroids and confined migration. SWELL1 polarization confers migration direction and efficiency, as predicted mathematically and determined experimentally via optogenetic spatiotemporal regulation. Optogenetic RhoA activation at the cell front triggers SWELL1 re-distribution and migration direction reversal in SWELL1-expressing, but not SWELL1-knockdown, cells. Efficient cell reversal also requires Cdc42, which controls NHE1 repolarization. Dual NHE1/SWELL1 knockdown inhibits breast cancer cell extravasation and metastasis in vivo, thereby illustrating the physiological significance of the Osmotic Engine Model.


Assuntos
Neoplasias , Trocadores de Sódio-Hidrogênio , Movimento Celular/fisiologia , Tamanho Celular , Humanos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...