Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093929

RESUMO

While hemodynamic stress plays a key role in aneurysm formation outside of SCD, its role is understudied in patients with SCD. We hypothesized that tissue-based markers of hemodynamic stress are associated with aneurysm presence in a prospective SCD cohort. Children and adults with SCD, with and without aneurysms, underwent longitudinal brain MRI/MRA to assess cerebral blood flow (CBF) and oxygen extraction fraction (OEF). Baseline characteristics were recorded. In the subgroup of adults, stepwise mixed-effect logistic regression examined clinical variables, CBF, and OEF as predictors of aneurysm presence. Cumulative rates of new aneurysm formation were estimated using Kaplan-Meier analyses. Forty-three aneurysms were found in 27 of 155 patients (17%). Most aneurysms were ≤ 3 mm and in the intracranial internal carotid artery. On univariate analysis, older age (p=0.07), lower hemoglobin (p=0.002), higher CBF (p=0.03), and higher OEF (p=0.02) were associated with aneurysm presence. On multivariable analysis, age and CBF remained independently associated with aneurysm presence. Seventy-six patients (49% of enrollment) received follow-up MRAs (median 3.5 years). No aneurysm grew or ruptured, however, seven new aneurysms developed in six patients. The three-year cumulative rate of aneurysm formation was 3.5%. In 155 patients with SCD, 17% had intracranial aneurysms. Three-year aneurysm formation rate was 3.5%, although limited by small longitudinal sample size and short follow-up duration. Aneurysm presence was associated with elevated CBF in adults, as a tissue-based marker of cerebral hemodynamic stress. Future studies may examine the predictive role of CBF in aneurysm development in SCD.

2.
Neurology ; 102(10): e209429, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38710015

RESUMO

BACKGROUND AND OBJECTIVES: People with sickle cell disease (SCD) are at risk of cognitive dysfunction independent of stroke. Diminished functional connectivity in select large-scale networks and white matter integrity reflect the neurologic consequences of SCD. Because chronic transfusion therapy is neuroprotective in preventing stroke and strengthening executive function abilities in people with SCD, we hypothesized that red blood cell (RBC) transfusion facilitates the acute reversal of disruptions in functional connectivity while white matter integrity remains unaffected. METHODS: Children with SCD receiving chronic transfusion therapy underwent a brain MRI measuring white matter integrity with diffusion tensor imaging and resting-state functional connectivity within 3 days before and after transfusion of RBCs. Cognitive assessments with the NIH Toolbox were acquired after transfusion and then immediately before the following transfusion cycle. RESULTS: Sixteen children with a median age of 12.5 years were included. Global assessments of functional connectivity using homotopy (p = 0.234) or modularity (p = 0.796) did not differ with transfusion. Functional connectivity within the frontoparietal network significantly strengthened after transfusion (median intranetwork Z-score 0.21 [0.17-0.30] before transfusion, 0.29 [0.20-0.36] after transfusion, p < 0.001), while there was not a significant change seen within the sensory motor, visual, auditory, default mode, dorsal attention, or cingulo-opercular networks. Corresponding to the change within the frontoparietal network, there was a significant improvement in executive function abilities after transfusion (median executive function composite score 87.7 [81.3-90.7] before transfusion, 90.3 [84.3-93.7] after transfusion, p = 0.021). Participants with stronger connectivity in the frontoparietal network before transfusion had a significantly greater improvement in the executive function composite score with transfusion (r = 0.565, 95% CI 0.020-0.851, p = 0.044). While functional connectivity and executive abilities strengthened with transfusion, there was not a significant change in white matter integrity as assessed by fractional anisotropy and mean diffusivity within 16 white matter tracts or globally with tract-based spatial statistics. DISCUSSION: Strengthening of functional connectivity with concomitant improvement in executive function abilities with transfusion suggests that functional connectivity MRI could be used as a biomarker for acutely reversible neurocognitive injury as novel therapeutics are developed for people with SCD.


Assuntos
Anemia Falciforme , Disfunção Cognitiva , Imagem de Tensor de Difusão , Humanos , Anemia Falciforme/terapia , Anemia Falciforme/complicações , Anemia Falciforme/fisiopatologia , Masculino , Criança , Feminino , Adolescente , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Transfusão de Eritrócitos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Função Executiva/fisiologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
3.
Am J Hematol ; 97(6): 682-690, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35113471

RESUMO

Patients with sickle cell anemia (SCA) experience cerebral metabolic stress with an increase in oxygen extraction fraction (OEF) to compensate for reduced oxygen carrying capacity due to anemia. It remains unclear if anemia alone drives this metabolic stress. Using MRI, we collected voxel-wise OEF measurements to test our hypothesis that OEF would be elevated in anemic controls without SCA (AC) compared to healthy controls (HC), but OEF would be even higher in SCA compared to AC. Brain MRIs (N = 159) were obtained in 120 participants (34 HC, 27 AC, 59 SCA). While hemoglobin was lower in AC versus HC (p < 0.001), hemoglobin was not different between AC and SCA cohorts (p = 0.459). Whole brain OEF was higher in AC compared to HC (p < 0.001), but lower compared to SCA (p = 0.001). Whole brain OEF remained significantly higher in SCA compared to HC (p = 0.001) while there was no longer a difference between AC versus HC (p = 0.935) in a multivariate model controlling for age and hemoglobin. OEF peaked within the border zone regions of the brain in both SCA and AC cohorts, but the volume of white matter with regionally elevated OEF in AC was smaller (1.8%) than SCA (58.0%). While infarcts colocalized within regions of elevated OEF, more SCA participants had infarcts than AC (p < 0.001). We conclude that children with SCA experience elevated OEF compared to AC and HC after controlling for the impact of anemia, suggesting that there are other pathophysiologic factors besides anemia contributing to cerebral metabolic stress in children with SCA.


Assuntos
Anemia Falciforme , Oxigênio , Anemia Falciforme/complicações , Encéfalo/diagnóstico por imagem , Criança , Humanos , Infarto , Estresse Fisiológico
4.
Meteorit Planet Sci ; 55(6): 1371-1381, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32848353

RESUMO

Filamentary enstatite crystals are found in interplanetary dust particles (IDPs) of likely cometary origin but are very rare or absent in meteorites. Crystallographic characteristics of filamentary enstatites indicate that they condensed directly from vapor. We measured the O isotopic composition of an enstatite ribbon from a giant cluster IDP to be δ18O = 25 ± 55, δ17O = -19 ± 129, Δ17O = -32 ± 134 (2σ errors), which is inconsistent at the 2σ level with the composition of the Sun inferred from the Genesis solar wind measurements. The particle's O isotopic composition, consistent with the terrestrial composition, implies that it condensed from a gas of nonsolar O isotopic composition, possibly as a result of vaporization of disk region enriched in 16O-depleted solids. The relative scarcity of filamentary enstatite in asteroids compared to comets implies either that this crystal condensed from dust vaporized in situ in the outer solar system where comets formed or it condensed in the inner solar system and was subsequently transported outward to the comet-forming region.

5.
Ultramicroscopy ; 159 Pt 2: 248-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26095824

RESUMO

The astrophysical origins of ∼ 3 nm-diameter meteoritic nanodiamonds can be inferred from the ratio of C12/C13. It is essential to achieve high spatial and mass resolving power and minimize all sources of signal loss in order to obtain statistically significant measurements. We conducted atom-probe tomography on meteoritic nanodiamonds embedded between layers of Pt. We describe sample preparation, atom-probe tomography analysis, 3D reconstruction, and bias correction. We present new data from meteoritic nanodiamonds and terrestrial standards and discuss methods to correct isotopic measurements made with the atom-probe tomograph.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA