Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 631(8021): 563-569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39020035

RESUMO

The uptake of carbon dioxide (CO2) by terrestrial ecosystems is critical for moderating climate change1. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO2 uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr-1 in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr-1 in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (-36 ± 6%) and tropical intact (-31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased2, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr-1 in 1990-2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr-1 in 1990-2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes1. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices1,3.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Florestas , Árvores , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Árvores/metabolismo , Árvores/crescimento & desenvolvimento , Clima Tropical , Conservação dos Recursos Naturais , Agricultura Florestal , Mudança Climática , Combustíveis Fósseis , Internacionalidade , Taiga
2.
Nat Commun ; 15(1): 6011, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019847

RESUMO

Herbivorous insects alter biogeochemical cycling within forests, but the magnitude of these impacts, their global variation, and drivers of this variation remain poorly understood. To address this knowledge gap and help improve biogeochemical models, we established a global network of 74 plots within 40 mature, undisturbed broadleaved forests. We analyzed freshly senesced and green leaves for carbon, nitrogen, phosphorus and silica concentrations, foliar production and herbivory, and stand-level nutrient fluxes. We show more nutrient release by insect herbivores at non-outbreak levels in tropical forests than temperate and boreal forests, that these fluxes increase strongly with mean annual temperature, and that they exceed atmospheric deposition inputs in some localities. Thus, background levels of insect herbivory are sufficiently large to both alter ecosystem element cycling and influence terrestrial carbon cycling. Further, climate can affect interactions between natural populations of plants and herbivores with important consequences for global biogeochemical cycles across broadleaved forests.


Assuntos
Florestas , Herbivoria , Insetos , Nitrogênio , Folhas de Planta , Temperatura , Herbivoria/fisiologia , Animais , Insetos/fisiologia , Folhas de Planta/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Fósforo/metabolismo , Ecossistema , Árvores/metabolismo
3.
Nature ; 625(7996): 728-734, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200314

RESUMO

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.


Assuntos
Florestas , Árvores , Clima Tropical , Biodiversidade , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , África , Sudeste Asiático
4.
Glob Chang Biol ; 29(23): 6812-6827, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815703

RESUMO

Peatlands of the central Congo Basin have accumulated carbon over millennia. They currently store some 29 billion tonnes of carbon in peat. However, our understanding of the controls on peat carbon accumulation and loss and the vulnerability of this stored carbon to climate change is in its infancy. Here we present a new model of tropical peatland development, DigiBog_Congo, that we use to simulate peat carbon accumulation and loss in a rain-fed interfluvial peatland that began forming ~20,000 calendar years Before Present (cal. yr BP, where 'present' is 1950 CE). Overall, the simulated age-depth curve is in good agreement with palaeoenvironmental reconstructions derived from a peat core at the same location as our model simulation. We find two key controls on long-term peat accumulation: water at the peat surface (surface wetness) and the very slow anoxic decay of recalcitrant material. Our main simulation shows that between the Late Glacial and early Holocene there were several multidecadal periods where net peat and carbon gain alternated with net loss. Later, a climatic dry phase beginning ~5200 cal. yr BP caused the peatland to become a long-term carbon source from ~3975 to 900 cal. yr BP. Peat as old as ~7000 cal. yr BP was decomposed before the peatland's surface became wetter again, suggesting that changes in rainfall alone were sufficient to cause a catastrophic loss of peat carbon lasting thousands of years. During this time, 6.4 m of the column of peat was lost, resulting in 57% of the simulated carbon stock being released. Our study provides an approach to understanding the future impact of climate change and potential land-use change on this vulnerable store of carbon.


Assuntos
Carbono , Áreas Alagadas , Congo , Solo , Ciclo do Carbono
5.
Science ; 381(6660): 830-831, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616354

RESUMO

Analysis reveals emission reductions from forest conservation have been overestimated.


Assuntos
Carbono , Mudança Climática , Conservação dos Recursos Naturais , Florestas
6.
Sci Rep ; 13(1): 12315, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516765

RESUMO

Tropical peatlands are carbon-dense ecosystems because they accumulate partially-decomposed plant material. A substantial fraction of this organic matter may derive from fine root production (FRP). However, few FRP estimates exist for tropical peatlands, with none from the world's largest peatland complex in the central Congo Basin. Here we report on FRP using repeat photographs of roots from in situ transparent tubes (minirhizotrons), measured to 1 m depth over three one-month periods (spanning dry to wet seasons), in a palm-dominated peat swamp forest, a hardwood-dominated peat swamp forest, and a terra firme forest. We find FRP of 2.6 ± 0.3 Mg C ha-1 yr-1, 1.9 ± 0.5 Mg C ha-1 yr-1, and 1.7 ± 0.1 Mg C ha-1 yr-1 in the three ecosystem types respectively (mean ± standard error; no significant ecosystem type differences). These estimates fall within the published FRP range worldwide. Furthermore, our hardwood peat swamp estimate is similar to the only other FRP study in tropical peatlands, also hardwood-dominated, from Micronesia. We also found that FRP decreased with depth and was the highest during the dry season. Overall, we show that minirhizotrons can be used as a low-disturbance method to estimate FRP in tropical forests and peatlands.


Assuntos
Ecossistema , RNA Longo não Codificante , Áreas Alagadas , Congo , Florestas , Solo
7.
PLoS One ; 18(4): e0273591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37058461

RESUMO

The world's largest tropical peatland lies in the central Congo Basin. Raphia laurentii De Wild, the most abundant palm in these peatlands, forms dominant to mono-dominant stands across approximately 45% of the peatland area. R. laurentii is a trunkless palm with fronds up to 20 m long. Owing to its morphology, there is currently no allometric equation which can be applied to R. laurentii. Therefore it is currently excluded from aboveground biomass (AGB) estimates for the Congo Basin peatlands. Here we develop allometric equations for R. laurentii, by destructively sampling 90 individuals in a peat swamp forest, in the Republic of the Congo. Prior to destructive sampling, stem base diameter, petiole mean diameter, the sum of petiole diameters, total palm height, and number of palm fronds were measured. After destructive sampling, each individual was separated into stem, sheath, petiole, rachis, and leaflet categories, then dried and weighed. We found that palm fronds represented at least 77% of the total AGB in R. laurentii and that the sum of petiole diameters was the best single predictor variable of AGB. The best overall allometric equation, however, combined the sum of petiole diameters (SDp), total palm height (H), and tissue density (TD): AGB = Exp(-2.691 + 1.425 × ln(SDp) + 0.695 × ln(H) + 0.395 × ln(TD)). We applied one of our allometric equations to data from two nearby 1-hectare forest plots, one dominated by R. laurentii, where R. laurentii accounted for 41% of the total forest AGB (with hardwood tree AGB estimated using the Chave et al. 2014 allometric equation), and one dominated by hardwood species, where R. laurentii accounted for 8% of total AGB. Across the entire region we estimate that R. laurentii stores around 2 million tonnes of carbon aboveground. The inclusion of R. laurentii in AGB estimates, will drastically improve overall AGB, and therefore carbon stock estimates for the Congo Basin peatlands.


Assuntos
Arecaceae , Clima Tropical , Humanos , Congo , Solo , Biomassa , Carbono
8.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210174, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373923

RESUMO

Restoration science is growing fast. The restoration of habitats is increasingly part of the discussion over how to tackle the challenges of climate change, biodiversity loss and rural development. With this increasing role and attendant visibility, restoration science has seen increasing controversy. Here I describe six aspects of robust restoration science that should be kept in mind to help realize its potential: do data-driven studies; focus on robust results; improve reproducibility; contextualize the results; give attention to economics; consider the wider goals of restoration. Realizing the potential of restoration science, via robust scientific studies, will provide society with the knowledge and tools to make better choices about which habitats to restore and where. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Biodiversidade , Ecossistema , Reprodutibilidade dos Testes , Florestas , Mudança Climática , Conservação dos Recursos Naturais
9.
Glob Chang Biol ; 29(3): 827-840, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36270799

RESUMO

Forests contribute to climate change mitigation through carbon storage and uptake, but the extent to which this carbon pool varies in space and time is still poorly known. Several Earth Observation missions have been specifically designed to address this issue, for example, NASA's GEDI, NASA-ISRO's NISAR and ESA's BIOMASS. Yet, all these missions' products require independent and consistent validation. A permanent, global, in situ, site-based forest biomass reference measurement system relying on ground data of the highest possible quality is therefore needed. Here, we have assembled a list of almost 200 high-quality sites through an in-depth review of the literature and expert knowledge. In this study, we explore how representative these sites are in terms of their coverage of environmental conditions, geographical space and biomass-related forest structure, compared to those experienced by forests worldwide. This work also aims at identifying which sites are the most representative, and where to invest to improve the representativeness of the proposed system. We show that the environmental coverage of the system does not seem to improve after at least the 175 most representative sites are included, but geographical and structural coverages continue to improve as more sites are added. We highlight the areas of poor environmental, geographical, or structural coverage, including, but not limited to, Canada, the western half of the USA, Mexico, Patagonia, Angola, Zambia, eastern Russia, and tropical and subtropical highlands (e.g. in Colombia, the Himalayas, Borneo, Papua). For the proposed system to succeed, we stress that (1) data must be collected and processed applying the same standards across all countries and continents; (2) system establishment and management must be inclusive and equitable, with careful consideration of working conditions; and (3) training and site partner involvement in downstream activities should be mandatory.


Assuntos
Tecnologia de Sensoriamento Remoto , Árvores , Biomassa , Florestas , Carbono , Clima Tropical
10.
Nature ; 612(7939): 277-282, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36323786

RESUMO

The forested swamps of the central Congo Basin store approximately 30 billion metric tonnes of carbon in peat1,2. Little is known about the vulnerability of these carbon stocks. Here we investigate this vulnerability using peat cores from a large interfluvial basin in the Republic of the Congo and palaeoenvironmental methods. We find that peat accumulation began at least at 17,500 calibrated years before present (cal. yr BP; taken as AD 1950). Our data show that the peat that accumulated between around 7,500 to around 2,000 cal. yr BP is much more decomposed compared with older and younger peat. Hydrogen isotopes of plant waxes indicate a drying trend, starting at approximately 5,000 cal. yr BP and culminating at approximately 2,000 cal. yr BP, coeval with a decline in dominant swamp forest taxa. The data imply that the drying climate probably resulted in a regional drop in the water table, which triggered peat decomposition, including the loss of peat carbon accumulated prior to the onset of the drier conditions. After approximately 2,000 cal. yr BP, our data show that the drying trend ceased, hydrologic conditions stabilized and peat accumulation resumed. This reversible accumulation-loss-accumulation pattern is consistent with other peat cores across the region, indicating that the carbon stocks of the central Congo peatlands may lie close to a climatically driven drought threshold. Further research should quantify the combination of peatland threshold behaviour and droughts driven by anthropogenic carbon emissions that may trigger this positive carbon cycle feedback in the Earth system.


Assuntos
Carbono , Solo , Congo
13.
Nat Ecol Evol ; 6(7): 878-889, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577983

RESUMO

Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forests' functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions.


Assuntos
Mudança Climática , Ecossistema , Florestas , Árvores , Água
15.
Animals (Basel) ; 11(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944360

RESUMO

Assessing the palatability of forage from locally adapted trees could improve the sustainability of livestock production systems. However, grasses continue to dominate livestock feed across the Amazon. We established a silvopastoral cattle farming system in Peru, comparing three different forage tree species with grass monocultures using a randomised block design. Trees were arranged in alleys of 0.5 × 7.5 m, planted alongside grass, and were directly browsed by cattle. Browse removal was estimated by three methods: destructive sampling, canopy measurements and leaf counts. We found that all three tree species were palatable to cattle. Plots containing trees and grass produced more available forage (mean > 2.2 Mg ha-1) for cattle than the grass monocultures (mean = 1.5 Mg ha-1). Destructive sampling below 1.6 m demonstrated that cattle consumed 99% of the available Erythrina berteroana forage, 75% of the available Inga edulis forage and 80% of the available Leucaena leucocephala forage in 8 days. This research demonstrates methodologies to estimate the intake of locally adapted browse species by cattle and highlights the potential benefits of silvopastoral systems in the Amazon. Planting trees could also benefit animal health and provide ecosystem services such as soil regeneration, enhanced nutrient cycling and carbon capture.

17.
Nature ; 596(7873): 536-542, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433947

RESUMO

Tropical forests store 40-50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems.


Assuntos
Atitude , Sequestro de Carbono , Carbono/análise , Floresta Úmida , Árvores/metabolismo , Clima Tropical , África , Biomassa , Mudança Climática , Conservação dos Recursos Naturais , Conjuntos de Dados como Assunto , Mapeamento Geográfico
19.
Nat Commun ; 11(1): 3346, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620761

RESUMO

Tropical ecosystems adapted to high water availability may be highly impacted by climatic changes that increase soil and atmospheric moisture deficits. Many tropical regions are experiencing significant changes in climatic conditions, which may induce strong shifts in taxonomic, functional and phylogenetic diversity of forest communities. However, it remains unclear if and to what extent tropical forests are shifting in these facets of diversity along climatic gradients in response to climate change. Here, we show that changes in climate affected all three facets of diversity in West Africa in recent decades. Taxonomic and functional diversity increased in wetter forests but tended to decrease in forests with drier climate. Phylogenetic diversity showed a large decrease along a wet-dry climatic gradient. Notably, we find that all three facets of diversity tended to be higher in wetter forests. Drier forests showed functional, taxonomic and phylogenetic homogenization. Understanding how different facets of diversity respond to a changing environment across climatic gradients is essential for effective long-term conservation of tropical forest ecosystems.


Assuntos
Biodiversidade , Secas , Florestas , Dispersão Vegetal , Plantas/genética , África Ocidental , Biomassa , Mudança Climática , Conservação dos Recursos Naturais , Filogenia , Chuva , Solo/química , Clima Tropical , Água
20.
Science ; 368(6493): 869-874, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32439789

RESUMO

The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.


Assuntos
Ciclo do Carbono , Mudança Climática , Florestas , Temperatura Alta , Árvores/metabolismo , Clima Tropical , Aclimatação , Biomassa , Carbono/metabolismo , Planeta Terra , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA