Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.459
Filtrar
1.
Appl Opt ; 63(16): E18-E27, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856588

RESUMO

Optical communications (OC) through water bodies is an attractive technology for a variety of applications. Thanks to current single-photon detection capabilities, OC receiver systems can reliably decode very weak transmitted signals. This is the regime where pulse position modulation is an ideal scheme. However, there has to be at least one photon that goes through the pupil of the fore optics and lands in the assigned time bin. We estimate the detectable photon budget as a function of range for propagation through ocean water, both open and coastal. We make realistic assumptions about the water's inherent optical properties, specifically, absorption and scattering coefficients, as well as the strong directionality of the scattering phase function for typical hydrosol populations. We adopt an analytical (hence very fast) path-integral small-angle solution of the radiative transfer equation for multiple forward-peaked scattering across intermediate to large optical distances. Integrals are performed both along the directly transmitted beam (whether or not it is still populated) and radially away from it. We use this modeling framework to estimate transmission of a 1 J pulse of 532 nm light through open ocean and coastal waters. Thresholds for single-photon detection per time bin are a few km and a few 100 m. These are indicative estimates that will be reduced in practice due to sensor noise, background light, turbulence, bubbles, and so on, to be included in future work.

2.
PLoS One ; 19(6): e0303577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843233

RESUMO

Malic Enzyme 1 (ME1) plays an integral role in fatty acid synthesis and cellular energetics through its production of NADPH and pyruvate. As such, it has been identified as a gene of interest in obesity, type 2 diabetes, and an array of epithelial cancers, with most work being performed in vitro. The current standard model for ME1 loss in vivo is the spontaneous Mod-1 null allele, which produces a canonically inactive form of ME1. Herein, we describe two new genetically engineered mouse models exhibiting ME1 loss at dynamic timepoints. Using murine embryonic stem cells and Flp/FRT and Cre/loxP class switch recombination, we established a germline Me1 knockout model (Me1 KO) and an inducible conditional knockout model (Me1 cKO), activated upon tamoxifen treatment in adulthood. Collectively, neither the Me1 KO nor Me1 cKO models exhibited deleterious phenotype under standard laboratory conditions. Knockout of ME1 was validated by immunohistochemistry and genotype confirmed by PCR. Transmission patterns favor Me1 loss in Me1 KO mice when maternally transmitted to male progeny. Hematological examination of these models through complete blood count and serum chemistry panels revealed no discrepancy with their wild-type counterparts. Orthotopic pancreatic tumors in Me1 cKO mice grow similarly to Me1 expressing mice. Similarly, no behavioral phenotype was observed in Me1 cKO mice when aged for 52 weeks. Histological analysis of several tissues revealed no pathological phenotype. These models provide a more modern approach to ME1 knockout in vivo while opening the door for further study into the role of ME1 loss under more biologically relevant, stressful conditions.


Assuntos
Malato Desidrogenase , Camundongos Knockout , Fenótipo , Animais , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Masculino , Camundongos , Feminino , Células Germinativas/metabolismo , Camundongos Endogâmicos C57BL
3.
Science ; 384(6700): eadk0850, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843329

RESUMO

To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Mutação , Neoplasias Pancreáticas , Fosfoproteínas , Proteoma , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fosforilação , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Animais , Camundongos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-38874616

RESUMO

Aging is associated with a significant decline in exercise fitness assessed by maximal exercise oxygen consumption (VO2-max). The specific VO2-max components driving this decline, namely cardiac output (CO) and arteriovenous oxygen difference (A-V) O2, remain unclear. We examined this issue by analyzing data from 99 community-dwelling participants (baseline age 21-96 years; average follow-up 12.6 years) from the Baltimore Longitudinal Study of Aging, free of clinical cardiovascular disease. VO2-peak, a surrogate of VO2-max, was used to assess aerobic capacity during upright cycle exercise. Peak exercise left ventricular (LV) volumes, heart rate, and cardiac output were estimated using repeated gated cardiac blood pool scans. The Fick equation was used to calculate (A-V) O2-peak from CO-peak and VO2-peak. In unadjusted models, VO2-peak, (A-V) O2-peak, and CO-peakdeclined longitudinally over time at steady rates with advancing age. In multiple linear regression models adjusting for baseline values and peak workload, however, steeper declines in VO2-peak and (A-V) O2 peak were observed with advanced entry age but not in CO-peak. The association between the declines in VO2-peak and (A-V) O2-peakwas stronger among those >=50 years compared to their younger counterparts but the difference between the two age groups did not reach statistical significance. These findings suggest that age-associated impairment of peripheral oxygen utilization during maximal exercise poses a stronger limitation on peak VO2 than that of CO. Future studies examining interventions targeting the structure and function of peripheral muscles and their vasculature to mitigate age-associated declines in (A-V) O2 are warranted.

5.
Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38843833

RESUMO

While ultraviolet (UV) radiation damages DNA, eliciting the DNA damage response (DDR), it also damages RNA, triggering transcriptome-wide ribosomal collisions and eliciting a ribotoxic stress response (RSR). However, the relative contributions, timing, and regulation of these pathways in determining cell fate is unclear. Here we use time-resolved phosphoproteomic, chemical-genetic, single-cell imaging, and biochemical approaches to create a chronological atlas of signaling events activated in cells responding to UV damage. We discover that UV-induced apoptosis is mediated by the RSR kinase ZAK and not through the DDR. We identify two negative-feedback modules that regulate ZAK-mediated apoptosis: (1) GCN2 activation limits ribosomal collisions and attenuates ZAK-mediated RSR and (2) ZAK activity leads to phosphodegron autophosphorylation and its subsequent degradation. These events tune ZAK's activity to collision levels to establish regimes of homeostasis, tolerance, and death, revealing its key role as the cellular sentinel for nucleic acid damage.

6.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743625

RESUMO

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Esferoides Celulares , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/genética , Esferoides Celulares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proliferação de Células , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
7.
Nat Commun ; 15(1): 4417, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789417

RESUMO

Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.


Assuntos
Estudo de Associação Genômica Ampla , Homeostase do Telômero , Telômero , Humanos , Telômero/genética , Telômero/metabolismo , Células K562 , Homeostase do Telômero/genética , Polimorfismo de Nucleotídeo Único , Regulação da Expressão Gênica , Sistemas CRISPR-Cas
9.
Nature ; 629(8014): 1174-1181, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720073

RESUMO

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.


Assuntos
Fosfotirosina , Proteínas Tirosina Quinases , Especificidade por Substrato , Tirosina , Animais , Humanos , Motivos de Aminoácidos , Evolução Molecular , Espectrometria de Massas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteômica , Transdução de Sinais , Domínios de Homologia de src , Tirosina/metabolismo , Tirosina/química
10.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699360

RESUMO

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European American (EA) ancestry group compared to those of Hispanic American (HA), African American (AA), and East Asian (EAS) ancestry. Further, we identified two genes ( CFHR1 and LRP6 ) that harbor multiple rare, putatively deleterious variants associated with mLOY susceptibility, show that subsets of human hematopoietic stem cells are enriched for activity of mLOY susceptibility variants, and that certain alleles on chromosome Y are more likely to be lost than others.

11.
Sci Adv ; 10(19): eadj5185, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728403

RESUMO

CK1 kinases participate in many signaling pathways, and their regulation is of meaningful biological consequence. CK1s autophosphorylate their C-terminal noncatalytic tails, and eliminating these tails increases substrate phosphorylation in vitro, suggesting that the autophosphorylated C-termini act as inhibitory pseudosubstrates. To test this prediction, we comprehensively identified the autophosphorylation sites on Schizosaccharomyces pombe Hhp1 and human CK1ε. Phosphoablating mutations increased Hhp1 and CK1ε activity toward substrates. Peptides corresponding to the C-termini interacted with the kinase domains only when phosphorylated, and substrates competitively inhibited binding of the autophosphorylated tails to the substrate binding grooves. Tail autophosphorylation influenced the catalytic efficiency with which CK1s targeted different substrates, and truncating the tail of CK1δ broadened its linear peptide substrate motif, indicating that tails contribute to substrate specificity as well. Considering autophosphorylation of both T220 in the catalytic domain and C-terminal sites, we propose a displacement specificity model to describe how autophosphorylation modulates substrate specificity for the CK1 family.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Especificidade por Substrato , Fosforilação , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Humanos , Domínio Catalítico , Ligação Proteica , Peptídeos/metabolismo , Peptídeos/química , Mutação , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase 1 épsilon/genética , Sequência de Aminoácidos
12.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562798

RESUMO

Mass spectrometry-based phosphoproteomics offers a comprehensive view of protein phosphorylation, but limited knowledge about the regulation and function of most phosphosites restricts our ability to extract meaningful biological insights from phosphoproteomics data. To address this, we combine machine learning and phosphoproteomic data from 1,195 tumor specimens spanning 11 cancer types to construct CoPheeMap, a network mapping the co-regulation of 26,280 phosphosites. Integrating network features from CoPheeMap into a machine learning model, CoPheeKSA, we achieve superior performance in predicting kinase-substrate associations. CoPheeKSA reveals 24,015 associations between 9,399 phosphosites and 104 serine/threonine kinases, including many unannotated phosphosites and under-studied kinases. We validate the accuracy of these predictions using experimentally determined kinase-substrate specificities. By applying CoPheeMap and CoPheeKSA to phosphosites with high computationally predicted functional significance and cancer-associated phosphosites, we demonstrate the effectiveness of these tools in systematically illuminating phosphosites of interest, revealing dysregulated signaling processes in human cancer, and identifying under-studied kinases as putative therapeutic targets.

13.
Cancer Discov ; 14(4): 550-551, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571434
14.
Angew Chem Int Ed Engl ; 63(24): e202402907, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563772

RESUMO

Typified by LiTMP and TMPMgCl.LiCl, (TMP=2,2,6,6-tetramethylpiperidide), s-block metal amides have found widespread applications in arene deprotonative metalation. On the contrary, transition metal amides lack sufficient basicity to activate these substrates. Breaking new ground in this field, here we present the synthesis and full characterisation of earth-abundant transition metals M(TMP)2 (M=Fe, Co). Uncovering a new reactivity profile towards fluoroarenes, these amide complexes can promote direct M-H exchange processes regioselectively using one or two of their basic amide arms. Remarkably, even when using a perfluorinated substrate, selective C-H metalation occurs leaving C-F bonds intact. Their kinetic basicity can be boosted by LiCl or NBu4Cl additives which enables formation of kinetically activated ate species. Combining spectroscopic and structural studies with DFT calculations, mechanistic insights have been gained on how these low polarity metalation processes take place. M(TMP)2 can also be used to access ferrocene and cobaltocene by direct deprotonation of cyclopentadiene and undergo efficient CO2 insertion of both amide groups under mild reaction conditions.

15.
Am J Ind Med ; 67(6): 499-514, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598122

RESUMO

Work-related psychosocial hazards are on the verge of surpassing many other occupational hazards in their contribution to ill-health, injury, disability, direct and indirect costs, and impact on business and national productivity. The risks associated with exposure to psychosocial hazards at work are compounded by the increasing background prevalence of mental health disorders in the working-age population. The extensive and cumulative impacts of these exposures represent an alarming public health problem that merits immediate, increased attention. In this paper, we review the linkage between work-related psychosocial hazards and adverse effects, their economic burden, and interventions to prevent and control these hazards. We identify six crucial societal actions: (1) increase awareness of this critical issue through a comprehensive public campaign; (2) increase etiologic, intervention, and implementation research; (3) initiate or augment surveillance efforts; (4) increase translation of research findings into guidance for employers and workers; (5) increase the number and diversity of professionals skilled in preventing and addressing psychosocial hazards; and (6) develop a national regulatory or consensus standard to prevent and control work-related psychosocial hazards.


Assuntos
Saúde Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/prevenção & controle , Estresse Ocupacional/psicologia , Doenças Profissionais/prevenção & controle , Doenças Profissionais/psicologia , Doenças Profissionais/epidemiologia , Doenças Profissionais/etiologia , Local de Trabalho/psicologia , Transtornos Mentais/psicologia , Transtornos Mentais/prevenção & controle , Transtornos Mentais/epidemiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38529321

RESUMO

Thioredoxin-interacting protein (TXNIP) plays a critical role in regulation of cellular redox reactions and inflammatory responses by interacting with thioredoxin (TRX) or the inflammasome. The role of TXNIP in lung fibrosis and molecular regulation of its stability have not been well studied. Therefore, here we investigated the molecular regulation of TXNIP stability and its role in TGF-ß1-mediated signaling in lung fibroblasts. TXNIP protein levels were significantly decreased in lung tissues from bleomycin-challenged mice. Overexpression of TXNIP attenuated transforming growth factor-ß1 (TGF-ß1)-induced phosphorylation of Smad2/3 and fibronectin expression in lung fibroblasts, suggesting that decrease in TXNIP may contribute to the pathogenesis of lung fibrosis. Further, we observed that TGF-ß1 lowered TXNIP protein levels, while TXNIP mRNA levels were unaltered by TGF-ß1 exposure. TGF-ß1 induced TXNIP degradation via the ubiquitin-proteasome system. A serine residue mutant (TNXIP-S308A) was resistant to TGF-ß1-induced degradation. Furthermore, downregulationof ubiquitin-specific protease-13 (USP13) promoted the TGF-ß1-induced TXNIP ubiquitination and degradation. Mechanistic studies revealed that USP13 targeted and deubiquitinated TXNIP. The results of this study revealed that the decrease of TXNIP in lungs apparently contributes to the pathogenesis of pulmonary fibrosis and that USP13 can target TXNP for deubiquitination and regulate its stability.

17.
Glob Pediatr Health ; 11: 2333794X241234566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414716

RESUMO

Objective. Interventions that effectively address HIV-related stigma are urgently needed to improve outcomes for adolescents living with HIV (ALHIV). We piloted a series of 4 short narrative films depicting Kenyan ALHIV's lived experiences of stigma and discrimination with 57 ALHIV and 50 adult caregivers of ALHIV in western Kenya. Methods. Participants completed either pre- and post-viewing questionnaires, including an HIV/AIDS-related stigma and discrimination scale, or participated in post-viewing focus group discussions. Three-month follow-up visits were conducted. Results. Caregivers endorsed significantly greater disagreement with stigmatizing statements on the scale at 3-month follow-up, whereas adolescents had no significant differences in scores. Participants reported they believed the films would have a positive impact on their communities and had led to changes in their own attitudes, beliefs and/or behavior. Conclusion. The HIV Stigma Films may show promise as an intervention to reduce stigmatizing attitudes and beliefs about HIV-infection, especially among caregivers of ALHIV.

18.
Proc Natl Acad Sci U S A ; 121(8): e2317343121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359293

RESUMO

Glucose and amino acid metabolism are critical for glioblastoma (GBM) growth, but little is known about the specific metabolic alterations in GBM that are targetable with FDA-approved compounds. To investigate tumor metabolism signatures unique to GBM, we interrogated The Cancer Genome Atlas for alterations in glucose and amino acid signatures in GBM relative to other human cancers and found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers. Treatment of patient-derived GBM cells with the FDA-approved single cysteine compound N-acetylcysteine (NAC) reduced GBM cell growth and mitochondrial oxygen consumption, which was worsened by glucose starvation. Normal brain cells and other cancer cells showed no response to NAC. Mechanistic experiments revealed that cysteine compounds induce rapid mitochondrial H2O2 production and reductive stress in GBM cells, an effect blocked by oxidized glutathione, thioredoxin, and redox enzyme overexpression. From analysis of the clinical proteomic tumor analysis consortium (CPTAC) database, we found that GBM cells exhibit lower expression of mitochondrial redox enzymes than four other cancers whose proteomic data are available in CPTAC. Knockdown of mitochondrial thioredoxin-2 in lung cancer cells induced NAC susceptibility, indicating the importance of mitochondrial redox enzyme expression in mitigating reductive stress. Intraperitoneal treatment of mice bearing orthotopic GBM xenografts with a two-cysteine peptide induced H2O2 in brain tumors in vivo. These findings indicate that GBM is uniquely susceptible to NAC-driven reductive stress and could synergize with glucose-lowering treatments for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Camundongos , Animais , Peróxido de Hidrogênio , Peróxidos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proteômica , Acetilcisteína/farmacologia , Glucose , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética
19.
Sci Rep ; 14(1): 4815, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413683

RESUMO

The increasing frequency and severity of UK wildfires, attributed in part to the effects of climate change, highlights the critical role of fuel moisture content (FMC) of live and dead vegetation in shaping wildfire behaviour. However, current models used to assess wildfire danger do not perform well in shrub-type fuels such as Calluna vulgaris, requiring in part an improved understanding of fuel moisture dynamics on diurnal and seasonal scales. To this end, 554 samples of upper live Calluna canopy, live Calluna stems, upper dead Calluna canopy, dead Calluna stems, moss, litter and organic layer (top 5 cm of organic material above mineral soil) were sampled hourly between 10:00 and 18:00 on seven days from March-August. Using a novel statistical method for investigating diurnal patterns, we found distinctive diurnal and seasonal trends in FMC for all fuel layers. Notably, significant diurnal patterns were evident in dead Calluna across nearly all sampled months, while diurnal trends in live Calluna canopy were pronounced in March, June, and August, coinciding with the peak occurrence of UK wildfires. In addition, the moisture content of moss and litter was found to fluctuate above and below their relative ignition thresholds throughout the day on some sampling days. These findings underscore the impact of diurnal FMC variations on wildfire danger during early spring and late summer in Calluna dominated peatlands and the need to consider such fluctuations in management and fire suppression strategies.


Assuntos
Briófitas , Calluna , Incêndios , Incêndios Florestais , Ecossistema , Solo
20.
Science ; 383(6683): eadj1415, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330136

RESUMO

Lung adenocarcinoma (LUAD) and small cell lung cancer (SCLC) are thought to originate from different epithelial cell types in the lung. Intriguingly, LUAD can histologically transform into SCLC after treatment with targeted therapies. In this study, we designed models to follow the conversion of LUAD to SCLC and found that the barrier to histological transformation converges on tolerance to Myc, which we implicate as a lineage-specific driver of the pulmonary neuroendocrine cell. Histological transformations are frequently accompanied by activation of the Akt pathway. Manipulating this pathway permitted tolerance to Myc as an oncogenic driver, producing rare, stem-like cells that transcriptionally resemble the pulmonary basal lineage. These findings suggest that histological transformation may require the plasticity inherent to the basal stem cell, enabling tolerance to previously incompatible oncogenic driver programs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-myc , Carcinoma de Pequenas Células do Pulmão , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/terapia , Células Epiteliais/patologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia , Oncogenes , Linhagem da Célula , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-akt/genética , Terapia de Alvo Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...