Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbes ; 5: xtae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560624

RESUMO

Asthma is a common allergic airway disease that has been associated with the development of the human microbiome early in life. Both the composition and function of the infant gut microbiota have been linked to asthma risk, but functional alterations in the gut microbiota of older patients with established asthma remain an important knowledge gap. Here, we performed whole metagenomic shotgun sequencing of 95 stool samples from a cross-sectional cohort of 59 healthy and 36 subjects with moderate-to-severe asthma to characterize the metagenomes of gut microbiota in adults and children 6 years and older. Mapping of functional orthologs revealed that asthma contributes to 2.9% of the variation in metagenomic content even when accounting for other important clinical demographics. Differential abundance analysis showed an enrichment of long-chain fatty acid (LCFA) metabolism pathways, which have been previously implicated in airway smooth muscle and immune responses in asthma. We also observed increased richness of antibiotic resistance genes (ARGs) in people with asthma. Several differentially abundant ARGs in the asthma cohort encode resistance to macrolide antibiotics, which are often prescribed to patients with asthma. Lastly, we found that ARG and virulence factor (VF) richness in the microbiome were correlated in both cohorts. ARG and VF pairs co-occurred in both cohorts suggesting that virulence and antibiotic resistance traits are coselected and maintained in the fecal microbiota of people with asthma. Overall, our results show functional alterations via LCFA biosynthetic genes and increases in antibiotic resistance genes in the gut microbiota of subjects with moderate-to-severe asthma and could have implications for asthma management and treatment.

2.
medRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37790477

RESUMO

Background: The upper (URT) and lower (LRT) respiratory tract feature distinct environments and responses affecting microbial colonization but investigating the relationship between them is technically challenging. We aimed to identify relationships between taxa colonizing the URT and LRT and explore their relationship with development during childhood. Methods: We employed V4 16S rDNA sequencing to profile nasopharyngeal swabs and tracheal aspirates collected from 183 subjects between 20 weeks and 18 years of age. These samples were collected prior to elective procedures at the Children's Hospital of Philadelphia over the course of 20 weeks in 2020, from otherwise healthy subjects enrolled in a study investigating potential reservoirs of SARS-CoV-2. Findings: After extraction, sequencing, and quality control, we studied the remaining 124 nasopharyngeal swabs and 98 tracheal aspirates, including 85 subject-matched pairs of samples. V4 16S rDNA sequencing revealed that the nasopharynx is colonized by few, highly-abundant taxa, while the tracheal aspirates feature a diverse assembly of microbes. While no taxa co-occur in the URT and LRT of the same subject, clusters of microbiomes in the URT correlate with clusters of microbiomes in the LRT. The clusters identified in the URT correlate with subject age across childhood development. Interpretations: The correlation between clusters of taxa across sites may suggest a mutual influence from either a third site, such as the oropharynx, or host-extrinsic, environmental features. The identification of a pattern of upper respiratory microbiota development across the first 18 years of life suggests that the patterns observed in early childhood may extend beyond the early life window.

3.
Biomed Res Int ; 2023: 1496072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152586

RESUMO

Background: Nimotuzumab exerts its antitumor effect (mainly antiproliferative, proapoptotic, and antiangiogenic) by blocking the epidermal growth factor receptor overexpressing between 30 and 95% in pancreatic tumors cells. Methods: A prospective, nonrandomized, uncontrolled, open-label, and multicenter clinical trial was conducted to evaluate the safety and effectiveness of nimotuzumab combined with gemcitabine as first-line treatment in unresectable locally advanced or metastatic pancreatic tumors in a real-world condition. Adverse events, their intensity, severity, and causality were determined using the Common Terminology Criteria for Adverse Events (CTCAE, version 4.0). Median overall survival, median progression-free survival, and 1- and 2-year survival rates were determined by using the Kaplan-Meier. Results: 69 patients were included. The proportion of related serious adverse events was 1.2%. The most frequent adverse events were nausea (10%), anemia (8%), and abdominal pain (8%). Objective response was achieved in 18.5% of the patients and disease control in 43.1%. Patients with locally advanced disease achieved a median overall survival of 16.36 months (95% CI; 14.35-18.38); 1- and 2-year survival rates of 72.2 and 29.2 months, respectively; a median progression-free survival of 9.6 months (95% CI; 4.91-14.20); and a 1-year progression-free survival rate of 39%. Patients with metastatic disease achieved a median survival of 6.23 months (95% CI; 4.32-8.13); 1- and 2-year survival rates of 18.1 and 3.0 months, respectively; a median progression-free survival of 7.6 months (95% CI; 6.08-9.90); and 1- and 2-year PFS rates of 20.5 and 5.1 months, respectively. Conclusions: Nimotuzumab combined with gemcitabine represents a safe and effective first-line treatment option for patients with advanced pancreatic adenocarcinoma in real-world conditions. Survival benefits were increased in those patients who received 8 or more doses of nimotuzumab. This trial is registered with RPCEC00000245 in the Cuban Registry of Clinical Trials, part of the World Health Organization's International Clinical Trials Registry Platform (ICTRP).


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Gencitabina , Neoplasias Pancreáticas/patologia , Desoxicitidina/uso terapêutico , Adenocarcinoma/patologia , Estudos Prospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resultado do Tratamento , Neoplasias Pancreáticas
4.
iScience ; 26(2): 105991, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824270

RESUMO

The gut microbiota in early childhood is linked to asthma risk, but may continue to affect older patients with asthma. Here, we profile the gut microbiota of 38 children (19 asthma, median age 8) and 57 adults (17 asthma, median age 28) by 16S rRNA sequencing and find individuals with asthma harbored compositional differences from healthy controls in both adults and children. We develop a model to aid the design of mechanistic experiments in gnotobiotic mice and show enterotoxigenic Bacteroides fragilis (ETBF) is more prevalent in the gut microbiota of patients with asthma compared to healthy controls. In mice, ETBF, modulated by community context, can increase oxidative stress in the lungs during allergic airway inflammation (AAI). Our results provide evidence that ETBF affects the phenotype of airway inflammation in a subset of patients with asthma which suggests that therapies targeting the gut microbiota may be helpful tools for asthma control.

5.
bioRxiv ; 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36711684

RESUMO

Asthma is a common allergic airway disease that develops in association with the human microbiome early in life. Both the composition and function of the infant gut microbiota have been linked to asthma risk, but functional alterations in the gut microbiota of older patients with established asthma remain an important knowledge gap. Here, we performed whole metagenomic shotgun sequencing of 95 stool samples from 59 healthy and 36 subjects with moderate-to-severe asthma to characterize the metagenomes of gut microbiota in children and adults 6 years and older. Mapping of functional orthologs revealed that asthma contributes to 2.9% of the variation in metagenomic content even when accounting for other important clinical demographics. Differential abundance analysis showed an enrichment of long-chain fatty acid (LCFA) metabolism pathways which have been previously implicated in airway smooth muscle and immune responses in asthma. We also observed increased richness of antibiotic resistance genes (ARGs) in people with asthma. One differentially abundant ARG was a macrolide resistance marker, ermF, which significantly co-occurred with the Bacteroides fragilis toxin, suggesting a possible relationship between enterotoxigenic B. fragilis, antibiotic resistance, and asthma. Lastly, we found multiple virulence factor (VF) and ARG pairs that co-occurred in both cohorts suggesting that virulence and antibiotic resistance traits are co-selected and maintained in the fecal microbiota of people with asthma. Overall, our results show functional alterations via LCFA biosynthetic genes and increases in antibiotic resistance genes in the gut microbiota of subjects with moderate-to-severe asthma and could have implications for asthma management and treatment.

6.
J Immunol ; 208(6): 1467-1482, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35173037

RESUMO

Asthma is a chronic disease of childhood, but for unknown reasons, disease activity sometimes subsides as children mature. In this study, we present clinical and animal model evidence suggesting that the age dependency of childhood asthma stems from an evolving host response to respiratory viral infection. Using clinical data, we show that societal suppression of respiratory virus transmission during coronavirus disease 2019 lockdown disrupted the traditional age gradient in pediatric asthma exacerbations, connecting the phenomenon of asthma remission to virus exposure. In mice, we show that asthmatic lung pathology triggered by Sendai virus (SeV) or influenza A virus is highly age-sensitive: robust in juvenile mice (4-6 wk old) but attenuated in mature mice (>3 mo old). Interestingly, allergen induction of the same asthmatic traits was less dependent on chronological age than viruses. Age-specific responses to SeV included a juvenile bias toward type 2 airway inflammation that emerged early in infection, whereas mature mice exhibited a more restricted bronchiolar distribution of infection that produced a distinct type 2 low inflammatory cytokine profile. In the basal state, aging produced changes to lung leukocyte burden, including the number and transcriptional landscape of alveolar macrophages (AMs). Importantly, depleting AMs in mature mice restored post-SeV pathology to juvenile levels. Thus, aging influences chronic outcomes of respiratory viral infection through regulation of the AM compartment and type 2 inflammatory responses to viruses. Our data provide insight into how asthma remission might develop in children.


Assuntos
Fatores Etários , Envelhecimento/fisiologia , Asma/imunologia , COVID-19/imunologia , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Respirovirus/imunologia , SARS-CoV-2/fisiologia , Vírus Sendai/fisiologia , Células Th2/imunologia , Animais , Asma/epidemiologia , COVID-19/epidemiologia , Citocinas/metabolismo , Humanos , Influenza Humana/epidemiologia , Camundongos , Camundongos Endogâmicos C57BL , Estados Unidos/epidemiologia
8.
Cell Rep ; 33(5): 108331, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33147448

RESUMO

Homeostatic mucosal immune responses are fine-tuned by naturally evolved interactions with native microbes, and integrating these relationships into experimental models can provide new insights into human diseases. Here, we leverage a murine-adapted airway microbe, Bordetella pseudohinzii (Bph), to investigate how chronic colonization impacts mucosal immunity and the development of allergic airway inflammation (AAI). Colonization with Bph induces the differentiation of interleukin-17A (IL-17A)-secreting T-helper cells that aid in controlling bacterial abundance. Bph colonization protects from AAI and is associated with increased production of secretory leukocyte protease inhibitor (SLPI), an antimicrobial peptide with anti-inflammatory properties. These findings are additionally supported by clinical data showing that higher levels of upper respiratory SLPI correlate both with greater asthma control and the presence of Haemophilus, a bacterial genus associated with AAI. We propose that SLPI could be used as a biomarker of beneficial host-commensal relationships in the airway.


Assuntos
Interações entre Hospedeiro e Microrganismos , Hipersensibilidade/microbiologia , Hipersensibilidade/patologia , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Microbiota , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Células A549 , Adolescente , Adulto , Animais , Antígenos/metabolismo , Bordetella/fisiologia , Criança , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Hipersensibilidade/complicações , Hipersensibilidade/imunologia , Imunidade , Inflamação/complicações , Inflamação/imunologia , Inflamação/microbiologia , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Células Th17/imunologia , Transcriptoma/genética , Adulto Jovem
9.
J Clin Microbiol ; 59(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33093026

RESUMO

The distribution of upper respiratory viral loads (VL) in asymptomatic children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unknown. We assessed PCR cycle threshold (Ct) values and estimated VL in infected asymptomatic children diagnosed in nine pediatric hospital testing programs. Records for asymptomatic and symptomatic patients with positive clinical SARS-CoV-2 tests were reviewed. Ct values were (i) adjusted by centering each value around the institutional median Ct value from symptomatic children tested with that assay and (ii) converted to estimated VL (numbers of copies per milliliter) using internal or manufacturer data. Adjusted Ct values and estimated VL for asymptomatic versus symptomatic children (118 asymptomatic versus 197 symptomatic children aged 0 to 4 years, 79 asymptomatic versus 97 symptomatic children aged 5 to 9 years, 69 asymptomatic versus 75 symptomatic children aged 10 to 13 years, 73 asymptomatic versus 109 symptomatic children aged 14 to 17 years) were compared. The median adjusted Ct value for asymptomatic children was 10.3 cycles higher than for symptomatic children (P < 0.0001), and VL were 3 to 4 logs lower than for symptomatic children (P < 0.0001); differences were consistent (P < 0.0001) across all four age brackets. These differences were consistent across all institutions and by sex, ethnicity, and race. Asymptomatic children with diabetes (odds ratio [OR], 6.5; P = 0.01), a recent contact (OR, 2.3; P = 0.02), and testing for surveillance (OR, 2.7; P = 0.005) had higher estimated risks of having a Ct value in the lowest quartile than children without, while an immunocompromised status had no effect. Children with asymptomatic SARS-CoV-2 infection had lower levels of virus in their nasopharynx/oropharynx than symptomatic children, but the timing of infection relative to diagnosis likely impacted levels in asymptomatic children. Caution is recommended when choosing diagnostic tests for screening of asymptomatic children.


Assuntos
Infecções Assintomáticas/epidemiologia , COVID-19/diagnóstico , COVID-19/epidemiologia , Carga Viral , Adolescente , Teste para COVID-19/métodos , Criança , Pré-Escolar , Feminino , Hospitais Pediátricos , Humanos , Lactente , Recém-Nascido , Masculino , Nasofaringe/virologia , Orofaringe/virologia , SARS-CoV-2/isolamento & purificação
10.
PLoS Biol ; 18(8): e3000788, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32841232

RESUMO

Women with bacterial vaginosis (BV), an imbalance of the vaginal microbiome, are more likely to be colonized by potential pathogens such as Fusobacterium nucleatum, a bacterium linked with intrauterine infection and preterm birth. However, the conditions and mechanisms supporting pathogen colonization during vaginal dysbiosis remain obscure. We demonstrate that sialidase activity, a diagnostic feature of BV, promoted F. nucleatum foraging and growth on mammalian sialoglycans, a nutrient resource that was otherwise inaccessible because of the lack of endogenous F. nucleatum sialidase. In mice with sialidase-producing vaginal microbiotas, mutant F. nucleatum unable to consume sialic acids was impaired in vaginal colonization. These experiments in mice also led to the discovery that F. nucleatum may also "give back" to the community by reinforcing sialidase activity, a biochemical feature of human dysbiosis. Using human vaginal bacterial communities, we show that F. nucleatum supported robust outgrowth of Gardnerella vaginalis, a major sialidase producer and one of the most abundant organisms in BV. These results illustrate that mutually beneficial relationships between vaginal bacteria support pathogen colonization and may help maintain features of dysbiosis. These findings challenge the simplistic dogma that the mere absence of "healthy" lactobacilli is the sole mechanism that creates a permissive environment for pathogens during vaginal dysbiosis. Given the ubiquity of F. nucleatum in the human mouth, these studies also suggest a possible mechanism underlying links between vaginal dysbiosis and oral sex.


Assuntos
Proteínas de Bactérias/genética , Disbiose/microbiologia , Fusobacterium/metabolismo , Gardnerella vaginalis/metabolismo , Neuraminidase/genética , Polissacarídeos/metabolismo , Vaginose Bacteriana/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Técnicas de Tipagem Bacteriana , Disbiose/patologia , Feminino , Fusobacterium/genética , Fusobacterium/isolamento & purificação , Fusobacterium/patogenicidade , Gardnerella vaginalis/genética , Gardnerella vaginalis/isolamento & purificação , Gardnerella vaginalis/patogenicidade , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/genética , Neuraminidase/metabolismo , RNA Ribossômico 16S/genética , Ácidos Siálicos/metabolismo , Simbiose/genética , Vagina/microbiologia , Vaginose Bacteriana/patologia
11.
Nat Microbiol ; 4(12): 2285-2297, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31501537

RESUMO

Hospitalized preterm infants receive frequent and often prolonged exposures to antibiotics because they are vulnerable to infection. It is not known whether the short-term effects of antibiotics on the preterm infant gut microbiota and resistome persist after discharge from neonatal intensive care units. Here, we use complementary metagenomic, culture-based and machine learning techniques to study the gut microbiota and resistome of antibiotic-exposed preterm infants during and after hospitalization, and we compare these readouts to antibiotic-naive healthy infants sampled synchronously. We find a persistently enriched gastrointestinal antibiotic resistome, prolonged carriage of multidrug-resistant Enterobacteriaceae and distinct antibiotic-driven patterns of microbiota and resistome assembly in extremely preterm infants that received early-life antibiotics. The collateral damage of early-life antibiotic treatment and hospitalization in preterm infants is long lasting. We urge the development of strategies to reduce these consequences in highly vulnerable neonatal populations.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Hospitalização , Metagenoma , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Biodiversidade , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Humanos , Recém-Nascido , Doenças do Recém-Nascido/tratamento farmacológico , Doenças do Recém-Nascido/microbiologia , Recém-Nascido Prematuro
13.
Cell Host Microbe ; 24(3): 337-339, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30212647

RESUMO

In this issue of Cell Host & Microbe, Teo et al. (2018) explore the development of the upper airway microbiota over the first 5 years of life and provide evidence for a "critical window" of microbial exposure that contributes to chronic wheezing, a precursor to asthma.


Assuntos
Asma/microbiologia , Hipersensibilidade , Microbiota , Bactérias , Criança , Humanos , Sons Respiratórios
14.
Curr Biol ; 25(15): 1955-65, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26144970

RESUMO

Cytokinesis in fission yeast cells depends on conventional myosin-II (Myo2) to assemble and constrict a contractile ring of actin filaments. Less is known about the functions of an unconventional myosin-II (Myp2) and a myosin-V (Myo51) that are also present in the contractile ring. Myo2 appears in cytokinetic nodes around the equator 10 min before spindle pole body separation (cell-cycle time, -10 min) independent of actin filaments, followed by Myo51 at time zero and Myp2 at time +20 min, both located between nodes and dependent on actin filaments. We investigated the contributions of these three myosins to cytokinesis using a severely disabled mutation of the essential myosin-II heavy-chain gene (myo2-E1) and deletion mutations of the other myosin heavy-chain genes. Cells with only Myo2 assemble contractile rings normally. Cells with either Myp2 or Myo51 alone can assemble nodes and actin filaments into contractile rings but complete assembly later than normal. Both Myp2 and Myo2 contribute to constriction of fully assembled rings at rates 55% that of normal in cells relying on Myp2 alone and 25% that of normal in cells with Myo2 alone. Myo51 alone cannot constrict rings but increases the constriction rate by Myo2 in Δmyp2 cells or Myp2 in myo2-E1 cells. Three myosins function in a hierarchal, complementary manner to accomplish cytokinesis, with Myo2 and Myo51 taking the lead during contractile ring assembly and Myp2 making the greatest contribution to constriction.


Assuntos
Ciclo Celular , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , Miosinas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/fisiologia , Divisão Celular , Citocinese , Mutação , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Miosinas/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Corpos Polares do Fuso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...