Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37623758

RESUMO

The occurrence of emerging organic contaminants, such as pharmaceuticals, is a growing global concern. In this research, for a membrane bioreactor (MBR) laboratory plant operating at a hydraulic retention time (HRT) of 24 h, fed with real urban wastewater, the heterotrophic biomass behaviour was analysed for two concentrations of erythromycin, ibuprofen, and diclofenac. The concentrations studied for the first phase were erythromycin 0.576 mg L-1, ibuprofen 0.056 mg L-1, and diclofenac 0.948 mg L-1. For Phase 2, the concentrations were increased to erythromycin 1.440 mg L-1, ibuprofen 0.140 mg L-1, and diclofenac 2.370 mg L-1. Heterotrophic biomass was affected and inhibited by the presence of pharmaceutical compounds in both phases. The system response to low concentrations of pharmaceutical compounds occurred in the initial phase of plant doping. Under these operating conditions, there was a gradual decrease in the concentration of mixed liquor suspended solids and the removal of chemical oxygen demand of the system, as it was not able to absorb the effect produced by the pharmaceutical compounds added in both phases.

2.
Membranes (Basel) ; 13(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37103846

RESUMO

This study analysed the kinetic results in the presence and absence of micropollutants (bisphenol A, carbamazepine, ciprofloxacin, and the mixture of the three compounds) obtained with respirometric tests with mixed liquor and heterotrophic biomass in a membrane bioreactor (MBR) working for two different hydraulic retention times (12-18 h) and under low-temperature conditions (5-8 °C). Independently of the temperature, the organic substrate was biodegraded faster over a longer hydraulic retention time (HRT) with similar doping, which was probably due to the longer contact time between the substrate and microorganisms within the bioreactor. However, low values of temperature negatively affected the net heterotrophic biomass growth rate, with reductions from 35.03 to 43.66% in phase 1 (12 h HRT) and from 37.18 to 42.77% in phase 2 (18 h HRT). The combined effect of the pharmaceuticals did not worsen the biomass yield compared with the effects caused individually.

3.
Bioresour Technol ; 363: 127968, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115507

RESUMO

Every day, large quantities of wastewater are discharged from various sources that could be reused. Wastewater contains nutrients such as nitrogen or phosphorus, which can be recovered. Microalgae-based technologies have attracted attention in this sector, as they are able to bioremediate wastewater, harnessing its nutrients and generating algal biomass useful for different downstream uses, as well as having other advantages. There are multiple species of microalgae capable of growing in wastewater, achieving nutrient removal efficiencies surpassing 70%. On the other hand, microalgae contain lipids that can be extracted for energy recovery in biodiesel. Currently, there are several methods of lipid extraction from microalgae. Other biofuels can also be obtained from microalgae biomass, such as bioethanol, biohydrogen or biogas. This review also provides information on bioenergy products and products in the agri-food industry as well as in the field of human health based on microalgae biomass within the concept of circular bioeconomy.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Reatores Biológicos , Humanos , Lipídeos , Nitrogênio/análise , Nutrientes , Fósforo , Águas Residuárias
4.
Sci Total Environ ; 780: 146554, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774301

RESUMO

The limited efficiency of conventional wastewater treatment plants (WWTPs) in emerging pollutants (EPs) removal encourages the development of alternative technologies for the adequate treatment of wastewater, due to its adverse effects on human health and ecosystems. The biological, physical or chemical hybrid technologies to treat EPs results interesting since they can enhance the performance of WWTPs. Among them, hybrid adsorption/biological technology could offer different possibilities that are explored in this work (PAC-MBR, PACT/GAC-CAS, BAC configurations). In this way, different variations in the adsorption process have been considered: the form of the adsorbent, the feed to the system, and the type of biological process, either conventional activated sludge (CAS), membrane bioreactor (MBR) or biofilm systems. For each combination, the removal efficiency of micropollutants, classified according to their use into pharmaceuticals, personal care products (PCPs) and other micropollutants (mainly benzotriazoles) was analysed. From reported data, it was observed a beneficial synergistic effect of dipole moment and octanol-water partition coefficient on the removal efficiency of micropollutants by adsorption/biological hybrid technology. Finally, a preliminary economic evaluation of the powdered activated carbon in a conventional activated sludge reactor (PACT), powdered activated carbon-membrane bioreactor (PAC-MBR) and biological activated carbon (BAC) hybrid systems was carried out by analysing the capital expenditure (CAPEX) of plants for capacities up to 75,000 m3d-1. Likewise, estimations of adsorbent concentration for a hypothetical plant with a capacity of 10,000 m3d-1 is presented. Among these hybrid configurations, PAC-MBR achieved the highest micropollutant elimination percentages; however, it presents the highest CAPEX and activated carbon requirements.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Adsorção , Reatores Biológicos , Análise Custo-Benefício , Ecossistema , Humanos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
5.
PLoS One ; 15(9): e0239949, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986772

RESUMO

Every day, society's concern over pollution caused by plastic waste grows greater. One of the most intensive sectors for the use of plastic is the food industry. Companies in this sector face the challenge of transitioning to a more sustainable and less intensive model of plastic use, respecting the principles established for a circular economy. Accordingly, one of the questions that industries tend to ask is whether sustainability will influence the consumer's purchase decision. To respond to this, the factors that determine a consumer's sustainable purchase decision in relation to the plastic and food industry have been analyzed in this paper. For this, a regression analysis was performed on a sample of Dutch consumers. The results show that the decision of purchase of the consumer of the Food Industry is conditioned by factors such as age, sustainable behavior, knowledge of the Circular economy and the perception of usefulness of plastic.


Assuntos
Comportamento do Consumidor , Tomada de Decisões , Embalagem de Alimentos/economia , Plásticos , Reciclagem/economia , Adolescente , Adulto , Fatores Etários , Idoso , Atitude , Poluição Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Inquéritos e Questionários , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-31242572

RESUMO

The circular economy aims to reduce the volume of waste generated in the world, transforming it into resources. The concept of indicator of circular economy was introduced to evaluate the improvement obtained regarding efficiency in terms of reduction, reuse and recycling of waste generated on the campus of the University of Lome (Togo). These indicators showed that 59.5% of the waste generated on the campus in 2018 could be introduced into the circular economy paradigm through composting, and 27.0% of the energy consumed could be replaced by clean energy obtained from biogas. The entire plastic fraction can be introduced into the circular economy paradigm by reusing plastic bottles and selling the rest in the port of the city. Thus, the income obtained could range from €15.5/day in 2018 to €34.5/day in 2027. Concerning old tires, 1.5% of the rubber needed to pave the entire roadway of the campus could be replaced by the waste generated by the tires currently existing there. Consequently, waste management on the campus could be controlled thanks to these indicators, and this could serve as a model for the rest of the country.


Assuntos
Modelos Econômicos , Gerenciamento de Resíduos , Biocombustíveis , Cidades , Plásticos , Reciclagem , Borracha , Togo , Universidades
7.
Environ Sci Pollut Res Int ; 26(1): 514-527, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30406593

RESUMO

A membrane bioreactor and two hybrid moving bed bioreactor-membrane bioreactors were operated for the treatment of variable salinity wastewater, changing in cycles of 6-h wastewater base salinity and 6-h maximum salinity (4.5 and 8.5 mS cm-1 electric conductivity, which relate to 2.4 and 4.8 g L-1 NaCl, respectively), under different hydraulic retention times (6, 9.5, and 12 h) and total solids concentrations (2500 and 3500 mg L-1). The evaluation of the performance of the systems showed that COD removal performance was unaffected by salinity conditions, while BOD5 and TN removals were significantly higher in the low-salinity scenario. The microbial community structure showed differences with respect to salinity conditions for Eukarya, suggesting their higher sensitivity for salinity with respect to Prokarya, which were similar at both salinity scenarios. Nevertheless, the intra-OTU distribution of consistently represented OTUs of Eukarya and Prokarya was affected by the different salinity maximums. Multivariate redundancy analyses showed that several genera such as Amphiplicatus (0.01-5.90%), Parvibaculum (0.27-1.19%), Thiothrix (0.30-1.19%), Rhodanobacter (2.81-5.85%), Blastocatella (0.21-2.01%), and Nitrobacter (0.80-0.99%) were positively correlated with BOD5 and TN removal, and the ecological roles of these were proposed. All these genera were substantially more represented under low-salinity conditions (10-500% higher relative abundance), demonstrating that they might be of importance for the treatment of variable salinity wastewater. Evaluation of Eukarya OTUs showed that many of them lack a consistent taxonomic classification, which highlights the lack of knowledge of the diversity and ecological role of Eukaryotes in saline wastewater treatment processes. The results obtained will be of interest for future design and operation of salinity wastewater treatment systems particularly because little is known on the effect of variable salinity conditions in wastewater treatment.


Assuntos
Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Membranas Artificiais , Microbiota , Salinidade , Purificação da Água/métodos
8.
Microb Cell Fact ; 16(1): 189, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29100519

RESUMO

BACKGROUND: Shewanella baltica KB30 was isolated from seawater collected in Kandalaksha Bay, White Sea (Russia). This strain is known for its ability to grow on a pool of different substrates, including carbohydrates, carboxylic and amino acids, and lipids. However, no data are available on its metabolic efficiency in relation to the use of different carbon sources typologies. This work represents the first attempt to characterize S. baltica by its heterotrophic kinetic performance. RESULTS: Growth and substrate consumption, during the biodegradation of sodium acetate, glucose, tween 80 and peptone, were analyzed through a respirometric method. To find the model best fitting the experimental data and to obtain the kinetic parameters, the equations of Monod, Moser, Contois and Tessier were applied. The kinetic behavior of S. baltica was fitted to Monod model for sodium acetate and tween 80, while it was adjusted to Contois model for glucose and peptone. In this regard, peptone was consumed faster than the other substrates, as indicated by the highest values of substrate degradation rate, which exceeded 60 mg O2 L-1 h-1. CONCLUSIONS: Proteolytic metabolism was favored than lipidic and glucidic metabolism, which could contribute much more to mineralization and recycling of proteins than lipids and carbohydrates.


Assuntos
Consumo de Oxigênio , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Glucose/metabolismo , Cinética , Peptonas/metabolismo , RNA Ribossômico 16S , Água do Mar/microbiologia , Acetato de Sódio/metabolismo
9.
Biotechnol Prog ; 33(6): 1483-1495, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28593654

RESUMO

Three pilot-scale bioreactors were started up and operated under salinity-amended urban wastewater feeding. The bioreactors were configured as membrane bioreactor and two different hybrid, moving bed biofilm reactor-membrane bioreactor and operated with a hydraulic retention time of 9.5 h, a solid residence time of 11.75 days and a total solids concentration of 2500 mg L-1 . The three systems showed excellent performance in suspended solids, BOD5 , and COD removal (values of 96-100%, 97-99%, and 88-90%, respectively), but poor nitrogen removal (values of 20-30%). The bacterial community structure during the start-up phase and the stabilization phase were different, as showed by ß-diversity analyses. The differences between aerobic and anoxic biomass-and between suspended and attached biomass-were higher at the start-up phase than at the stabilization phase. The start-up phase showed high abundances of Chiayiivirga (mean values around 3-12% relative abundance) and Luteimonas (5-8%), but in the stabilization phase, the domination belonged to Thermomonas (3-14%), Nitrobacter (3-7%), Ottowia (3-11.5%), and Comamonas (2-6%), among others. Multivariate redundancy analyses showed that Thermomonas and Nitrosomonas were positively correlated with fast autotrophic kinetics, while Caulobacter and Ottowia were positively correlated with fast heterotrophic kinetics. Nitrobacter, Rhodanobacter, and Comamonas were positively correlated with fast autotrophic and heterotrophic kinetics. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1483-1495, 2017.


Assuntos
Reatores Biológicos , Membranas Artificiais , Águas Residuárias/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biomassa , Cinética , Nitrogênio/química , Salinidade , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...