Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
JCO Clin Cancer Inform ; 8: e2400077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822755

RESUMO

PURPOSE: Artificial intelligence (AI) models can generate scientific abstracts that are difficult to distinguish from the work of human authors. The use of AI in scientific writing and performance of AI detection tools are poorly characterized. METHODS: We extracted text from published scientific abstracts from the ASCO 2021-2023 Annual Meetings. Likelihood of AI content was evaluated by three detectors: GPTZero, Originality.ai, and Sapling. Optimal thresholds for AI content detection were selected using 100 abstracts from before 2020 as negative controls, and 100 produced by OpenAI's GPT-3 and GPT-4 models as positive controls. Logistic regression was used to evaluate the association of predicted AI content with submission year and abstract characteristics, and adjusted odds ratios (aORs) were computed. RESULTS: Fifteen thousand five hundred and fifty-three abstracts met inclusion criteria. Across detectors, abstracts submitted in 2023 were significantly more likely to contain AI content than those in 2021 (aOR range from 1.79 with Originality to 2.37 with Sapling). Online-only publication and lack of clinical trial number were consistently associated with AI content. With optimal thresholds, 99.5%, 96%, and 97% of GPT-3/4-generated abstracts were identified by GPTZero, Originality, and Sapling respectively, and no sampled abstracts from before 2020 were classified as AI generated by the GPTZero and Originality detectors. Correlation between detectors was low to moderate, with Spearman correlation coefficient ranging from 0.14 for Originality and Sapling to 0.47 for Sapling and GPTZero. CONCLUSION: There is an increasing signal of AI content in ASCO abstracts, coinciding with the growing popularity of generative AI models.


Assuntos
Indexação e Redação de Resumos , Inteligência Artificial , Oncologia , Humanos , Oncologia/métodos
2.
Angew Chem Int Ed Engl ; : e202407597, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818663

RESUMO

Aromatic amines are important commercial chemicals, but their carcinogenicity poses a threat to humans and other organisms, making their rapid quantitative detection increasingly urgent. Here, amorphous MoO3 (a-MoO3) monolayers with localized surface plasmon resonance (LSPR) effect in the visible region are designed for the trace detection of carcinogenic aromatic amine molecules. The hot-electron fast decay component of a-MoO3 decreases from 301 fs to 150 fs after absorption with methyl orange (MO) molecules, indicating the plasmon-induced hot-electron transfer (PIHET) process from a-MoO3 to MO. Therefore, a-MoO3 monolayers present high SERS performance due to the synergistic effect of electromagnetic enhancement (EM) and PIHET, proposing the EM-PIHET synergistic mechanism in a-MoO3. In addition, a-MoO3 possesses higher electron delocalization and electronic state density than crystal MoO3 (c-MoO3), which is conducive to the PIHET. The limit of detection (LOD) for o-aminoazotoluene (o-AAT) is 10-9 M with good uniformity, acid resistance, and thermal stability. In this work, trace detection and identification of various carcinogenic aromatic amines based on a-MoO3 monolayers is realized, which is of great significance for reducing cancer infection rates.

3.
Opt Lett ; 49(8): 1965-1968, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621052

RESUMO

We propose a concise hardware architecture supporting efficient exclusive OR (XOR) and exclusive NOR (XNOR) operations, by employing a single photonic spiking neuron based on a passive add-drop microring resonator (ADMRR). The threshold mechanism and inhibitory dynamics of the ADMRR-based spiking neuron are numerically discussed on the basis of the coupled mode theory. It is shown that a precise XOR operation in the ADMRR-based spiking neuron can be implemented by adjusting temporal differences within the inhibitory window. Additionally, within the same framework, the XNOR function can also be carried out by accumulating the input power over time to trigger an excitatory behavior. This work presents a novel, to the best of our knowledge, and pragmatic technique for optical neuromorphic computing and information processing utilizing passive devices.

4.
BMC Bioinformatics ; 25(1): 134, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539070

RESUMO

Deep learning methods have emerged as powerful tools for analyzing histopathological images, but current methods are often specialized for specific domains and software environments, and few open-source options exist for deploying models in an interactive interface. Experimenting with different deep learning approaches typically requires switching software libraries and reprocessing data, reducing the feasibility and practicality of experimenting with new architectures. We developed a flexible deep learning library for histopathology called Slideflow, a package which supports a broad array of deep learning methods for digital pathology and includes a fast whole-slide interface for deploying trained models. Slideflow includes unique tools for whole-slide image data processing, efficient stain normalization and augmentation, weakly-supervised whole-slide classification, uncertainty quantification, feature generation, feature space analysis, and explainability. Whole-slide image processing is highly optimized, enabling whole-slide tile extraction at 40x magnification in 2.5 s per slide. The framework-agnostic data processing pipeline enables rapid experimentation with new methods built with either Tensorflow or PyTorch, and the graphical user interface supports real-time visualization of slides, predictions, heatmaps, and feature space characteristics on a variety of hardware devices, including ARM-based devices such as the Raspberry Pi.


Assuntos
Aprendizado Profundo , Software , Computadores , Processamento de Imagem Assistida por Computador/métodos
5.
Arterioscler Thromb Vasc Biol ; 44(4): 915-929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38357819

RESUMO

BACKGROUND: Until now, the analysis of microvascular networks in the reperfused ischemic brain has been limited due to tissue transparency challenges. METHODS: Using light sheet microscopy, we assessed microvascular network remodeling in the striatum from 3 hours to 56 days post-ischemia in 2 mouse models of transient middle cerebral artery occlusion lasting 20 or 40 minutes, resulting in mild ischemic brain injury or brain infarction, respectively. We also examined the effect of a clinically applicable S1P (sphingosine-1-phosphate) analog, FTY720 (fingolimod), on microvascular network remodeling. RESULTS: Over 56 days, we observed progressive microvascular degeneration in the reperfused striatum, that is, the lesion core, which was followed by robust angiogenesis after mild ischemic injury induced by 20-minute middle cerebral artery occlusion. However, more severe ischemic injury elicited by 40-minute middle cerebral artery occlusion resulted in incomplete microvascular remodeling. In both cases, microvascular networks did not return to their preischemic state but displayed a chronically altered pattern characterized by higher branching point density, shorter branches, higher unconnected branch density, and lower tortuosity, indicating enhanced network connectivity. FTY720 effectively increased microvascular length density, branching point density, and volume density in both models, indicating an angiogenic effect of this drug. CONCLUSIONS: Utilizing light sheet microscopy together with automated image analysis, we characterized microvascular remodeling in the ischemic lesion core in unprecedented detail. This technology will significantly advance our understanding of microvascular restorative processes and pave the way for novel treatment developments in the stroke field.


Assuntos
Isquemia Encefálica , Cloridrato de Fingolimode , Camundongos , Animais , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Infarto da Artéria Cerebral Média/patologia , Microscopia , Encéfalo/irrigação sanguínea , Microvasos/patologia , Modelos Animais de Doenças
6.
Adv Mater ; 36(19): e2304991, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408365

RESUMO

The eradication of osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge due to its development of biofilm-induced antibiotic resistance and impaired innate immunity, which often leads to frequent surgical failure. Here, the design, synthesis, and performance of X-ray-activated polymer-reinforced nanotherapeutics that modulate the immunological properties of infectious microenvironments to enhance chemoradiotherapy against multidrug-resistant bacterial deep-tissue infections are reported. Upon X-ray radiation, the proposed polymer-reinforced nanotherapeutic generates reactive oxygen species and reactive nitrogen species. To robustly eradicate MRSA biofilms at deep infection sites, these species can specifically bind to MRSA and penetrate biofilms for enhanced chemoradiotherapy treatment. X-ray-activated nanotherapeutics modulate the innate immunity of macrophages to prevent the recurrence of osteomyelitis. The remarkable anti-infection effects of these nanotherapeutics are validated using a rat osteomyelitis model. This study demonstrates the significant potential of a synergistic chemoradiotherapy and immunotherapy method for treating MRSA biofilm-infected osteomyelitis.


Assuntos
Biofilmes , Staphylococcus aureus Resistente à Meticilina , Osteomielite , Polímeros , Infecções Estafilocócicas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Osteomielite/tratamento farmacológico , Osteomielite/terapia , Osteomielite/microbiologia , Animais , Infecções Estafilocócicas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Ratos , Polímeros/química , Polímeros/farmacologia , Quimiorradioterapia/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Espécies Reativas de Nitrogênio/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38329860

RESUMO

Graph neural networks (GNNs) have attracted extensive research attention in recent years due to their capability to progress with graph data and have been widely used in practical applications. As societies become increasingly concerned with the need for data privacy protection, GNNs face the need to adapt to this new normal. Besides, as clients in federated learning (FL) may have relationships, more powerful tools are required to utilize such implicit information to boost performance. This has led to the rapid development of the emerging research field of federated GNNs (FedGNNs). This promising interdisciplinary field is highly challenging for interested researchers to grasp. The lack of an insightful survey on this topic further exacerbates the entry difficulty. In this article, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a 2-D taxonomy of the FedGNN literature: 1) the main taxonomy provides a clear perspective on the integration of GNNs and FL by analyzing how GNNs enhance FL training as well as how FL assists GNN training and 2) the auxiliary taxonomy provides a view on how FedGNNs deal with heterogeneity across FL clients. Through discussions of key ideas, challenges, and limitations of existing works, we envision future research directions that can help build more robust, explainable, efficient, fair, inductive, and comprehensive FedGNNs.

8.
Neural Netw ; 172: 106100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232427

RESUMO

Insufficient data is a long-standing challenge for Brain-Computer Interface (BCI) to build a high-performance deep learning model. Though numerous research groups and institutes collect a multitude of EEG datasets for the same BCI task, sharing EEG data from multiple sites is still challenging due to the heterogeneity of devices. The significance of this challenge cannot be overstated, given the critical role of data diversity in fostering model robustness. However, existing works rarely discuss this issue, predominantly centering their attention on model training within a single dataset, often in the context of inter-subject or inter-session settings. In this work, we propose a hierarchical personalized Federated Learning EEG decoding (FLEEG) framework to surmount this challenge. This innovative framework heralds a new learning paradigm for BCI, enabling datasets with disparate data formats to collaborate in the model training process. Each client is assigned a specific dataset and trains a hierarchical personalized model to manage diverse data formats and facilitate information exchange. Meanwhile, the server coordinates the training procedure to harness knowledge gleaned from all datasets, thus elevating overall performance. The framework has been evaluated in Motor Imagery (MI) classification with nine EEG datasets collected by different devices but implementing the same MI task. Results demonstrate that the proposed framework can boost classification performance up to 8.4% by enabling knowledge sharing between multiple datasets, especially for smaller datasets. Visualization results also indicate that the proposed framework can empower the local models to put a stable focus on task-related areas, yielding better performance. To the best of our knowledge, this is the first end-to-end solution to address this important challenge.


Assuntos
Interfaces Cérebro-Computador , Humanos , Conhecimento , Eletroencefalografia , Imaginação
9.
Langmuir ; 39(46): 16657-16667, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37938827

RESUMO

Graphite carbon nitride (g-C3N4) with a suitable structure and strong amine activity is designed and prepared to serve as a hydrogen bond donor for the microfibrilization of corncob cellulose to form a cellulose microfiber (CMF) bundle. Simultaneously, well-dispersed nanosized g-C3N4 is loaded into the bundle to form a photocatalyst for efficient photodegradation of rhodamine B (Rh B) in water. Under the optimal preparation conditions at 165 °C, 10 min, and 0.08 mol/L H2SO4, the yield of g-C3N4-functionalized cellulose microfibers (CMF-g-C3N4) reaches to the highest over 70%. The catalytic rate of CMF-g-C3N4 is 3.3 times larger than that of pure g-C3N4. The degradation rate of Rh B is maintained at over 90% in 10 cycles of photocatalytic degradation. The obtained CMF-g-C3N4 also has good thermal stability and mechanical properties. This research suggests a particularly simple way to transform cellulose into a highly efficient photocatalyst for water treatment.

10.
Macromol Rapid Commun ; 44(23): e2300379, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673414

RESUMO

Keratitis caused by drug-resistant bacteria is a severe condition that can lead to corneal perforation and even blindness, making effective treatment a top priority amid growing antibiotic resistance. Eye drops for anti-inflammatory treatment necessitate frequent administration of high doses throughout every day due to bacterial resistance resulting from antibiotic overuse and the low bioavailability of drugs. To overcome these issues, an antibacterial nanocomposite is prepared via conjugating random copolymers of galactose and 3-(acrylamide)phenylboronic acid to the surface of silver nanoparticles. The customized nanocomposites trigger specific binding to bacteria, resulting in excellent retention of the drug on the ocular surface, resulting in rapid and powerful killing of bacteria and inhibition of bacterial proliferation. Due to its superior drug delivery capabilities to the ocular surface, the functionalized nanocomplex markedly amplifies the anti-inflammatory efficacy, even at low doses. This effect is achieved by impeding immune cell infiltration and diminishing the synthesis of inflammatory mediators and cytokines, thereby suggesting enhanced healing properties for corneal inflammation. This study demonstrates a promising nanocomposite which is an effective and safe antibacterial strategy for bacterial keratitis with favorable prognostic and clinical conversion potential.


Assuntos
Ceratite , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Prata/química , Preparações Farmacêuticas , Nanopartículas Metálicas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Bactérias , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
11.
J Mater Chem B ; 11(39): 9525-9531, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37747051

RESUMO

Microorganism adhesion and the resulting contamination of the biomaterial is one of the major causes of biomedical device failure. Stimuli-responsive materials based on dynamically regulating interactions with reversible characteristics of on-off states have attracted increasing attention. Here, a facile self-assembled biomaterial nanocoating constructed using acidity- and photoregulated spiropyran-modified nanoparticles was developed for reversibly regulating bacteria or mammalian cell adhesion-and-detachment. The coating was formed by coating a solution of spiropyran-conjugated nanoparticles around the surface of a silica gel followed by curing and drying at 60 °C for 30 min. Importantly, efficient adhesion-and-detachment of bacteria or cells could be controlled even after 8 cycles owing to the excellent acidity- and light-switched ability. Collectively, this well-defined self-assembled nanocoating as a dynamical and reversible agent provides promising insight for the development of biomedical devices, especially for biomaterial medical coatings.

12.
Opt Lett ; 48(12): 3167-3170, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319053

RESUMO

We propose and demonstrate an all-optical synaptic neuron based on an add-drop microring resonator (ADMRR) with power-tunable auxiliary light. Dual neural dynamics of passive ADMRRs, having spiking response and synaptic plasticity, are numerically investigated. It is demonstrated that, by injecting two beams of power-tunable and opposite-direction continuous light into an ADMRR and maintaining their sum power at a constant value, linear-tunable and single-wavelength neural spikes can be flexibly generated, in virtue of the nonlinear effects triggered by perturbation pulses. Based on this, a weighting operation system based on cascaded ADMRRs is designed; it enables implementation of real-time weighting operations at a number of wavelengths. This work provides a novel, to the best of our knowledge, approach for integrated photonic neuromorphic systems based entirely on optical passive devices.


Assuntos
Dispositivos Ópticos , Fótons , Óptica e Fotônica , Neurônios
13.
Mar Pollut Bull ; 189: 114823, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36931154

RESUMO

Mutual transformations of rhizospheric arsenic (As) in pollution-prone mangrove sediments affected by root exudate oxalate were simulated. This study focuses on the effect of oxalate on As release, mobilization, and phase speciation associated with P and Fe was examined under anoxic conditions in time-dependent changes. Results showed that oxalate addition significantly facilitated As-Fe-P release from As-contaminated mangrove sediments. Sediment As formed the adsorptive and the carbonate-binding fractionations, facilitating the re-adsorption processes. Solution As and As5+ correlated with NaOH-P positively but with NaHCO3-P and HCl-P negatively. Dominant Fe3+ (>84 %) from the amorphous Fe regulated suspension changes and then time-dependent co-precipitation with As and P. Sediment P formed strong complexes with Fe oxides and could be substituted for As via STEM analysis. Oxalate ligand exchange, competitive adsorption of oxalate, and Fe-reduced dissolution are confirmed to involve, allowing for an insight As/P/Fe mobilization and fate in mangrove wetland.


Assuntos
Arsênio , Ferro , Ferro/química , Arsênio/análise , Oxalatos/química , Fosfatos , Poluição Ambiental , Sedimentos Geológicos/química
14.
Adv Mater ; 35(14): e2211790, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36632699

RESUMO

Precisely tailoring the oxidation state of single-atomic metal in heterogeneous catalysis is an efficient way to stabilize the single-atomic site and promote their activity, but realizing this approach remains a grand challenge to date. Herein, a class of stable single-atomic catalysts with well-tuned oxidation state of Pt by forming PtFe atomic bonds is reported, which are supported by defective Fe2 O3  nanosheets on reduced graphene oxide (PFARFNs). These as-synthesized materials can greatly enhance the catalytic activity, stability, and selectivity for the diboration of alkynes. The PFARFNs exhibit high conversion of 99% at 100 °C with an outstanding turnover frequency (TOF) of 545 h-1 , and a relatively high conversion of 58% at room temperature (25 °C) with a TOF of 310 h-1 , which has been hardly achieved previously. Through both experimental and theoretical investigation, it is demonstrated that the fast electron transfer from Fe to Pt in Fe-Pt-O atomic sites in PFARFNs can not only stabilize the single-atomic Pt, but also significantly improve their catalytic activity.

15.
J Pharm Sci ; 112(2): 513-524, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36150469

RESUMO

Recently, coamorphization and cocrystal technologies are of particular interest in the pharmaceutical industry due to their ability to improve the solubility/dissolution and bioavailability of poorly water-soluble drugs, while the coamorphous system often tends to convert into the stable crystalline form usually crystalline physical mixture of each component during formulation preparation or storage. In this paper, BCS II drug baicalein (BAI) along with nicotinamide (NIC) were prepared into a single homogeneous coamorphous system with a single transition temperature at 42.5 °C. Interestingly, instead of the physical mixture of crystalline BAI and NIC, coamorphous BAI-NIC would transform to its cocrystal form under stress of temperature and humidity. The transformation rate under isothermal condition was temperature-dependent, since the crystallinity of the cocrystal enhanced as the temperature increased. Further mechanic studies showed the activation energy for the transformation under non-isothermal condition was calculated to be 184.52 kJ/mol. Additionally, water vapor sorption tests with further solid characterizations indicated the transformation was faster under higher humidity condition due to the faster nucleation process of cocrystal BAI-NIC. This research not only discovered the mechanism of transformation from coamorphous BAI-NIC to cocrystal form, but also provided an unusual method for cocrystal preparation from its coamorphous form.


Assuntos
Flavanonas , Niacinamida , Niacinamida/química , Cristalização/métodos , Solubilidade
16.
Adv Mater ; 34(50): e2206646, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36245331

RESUMO

Osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA) biofilm infection is difficult to eradicate and can even be life-threatening. Given that the infection is persistent and deep-seated in the bone tissue, controlled and efficient treatment of osteomyelitis remains challenging. Herein, an activatable nanostructure (Au/TNT@PG) is presented for synergistic sonodynamic-catalytic therapy of MRSA-infected osteomyelitis. The Au/TNT@PG backbone is obtained by conjugating a guanidinium-rich polymer (PG), a component that penetrates the biofilm matrix, onto ultrasound (US)-absorbing gold-doped titanate nanotubes (Au/TNTs). Under deep-penetrating US irradiation, the nanocomposite generates 1 O2 for sonodynamic therapy and catalyzes the decomposition of endogenous H2 O2 into toxic •OH in the acidic infection microenvironment for catalytic therapy, leading to bacterial cell death. Its robust antibacterial effectiveness is attributable to its bacteria-capturing ability, the biofilm penetrability of positively charged guanidinium, and the subsequent synergistic effect of sonodynamic-catalytic action of Au/TNT. Such a remotely controlled approach potentiates the polarization of macrophages to M2-type while suppressing the M1-type, leading to topical inflammation resolution and enhanced osteoblast proliferation and differentiation to inhibit bone loss. Therefore, this study provides a generic nanotherapeutic approach for efficient sonodynamic-catalytic therapy with respect to osteomyelitis.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanoestruturas , Osteomielite , Infecções Estafilocócicas , Humanos , Guanidina/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Osteomielite/diagnóstico por imagem , Osteomielite/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Nanoestruturas/uso terapêutico
17.
Chemistry ; 28(72): e202202434, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36168993

RESUMO

Narrowband deep blue thermally activated delayed fluorescent (TADF) materials have attracted significant attention. Herein, four asymmetrical structured TADF emitters based on diphenylsulfone (DPS) acceptor and 9,9-dimethyl-9,10-dihydroacridine (DMAC) donor with progressive performances were developed. The tert-butyloxy auxiliary electron-donor was adopted to restrict the intramolecular rotations and provide efficient steric hindrance. Regioisomerization by altering the substitution position of DMAC on DPS unit further enhanced the intra- and inter-molecular interactions. The accompanying effects yielded increased energy level, minimized reorganization energy, and inhibited non-radiative transitions in the crystals of tBuO-SOmAD, which achieved narrowband deep-blue emission peaking at 424 nm (FWHM=64 nm, ΦF =33.6 %) through aggregation-induced, blue-shifted emission (AIBSE). In addition, deep-blue organic light emitting diodes (OLEDs) based on tBuO-SOmAD realized the electroluminescence (EL) spectrum peaking located at 435 nm and CIE coordination of (0.12, 0.09).

18.
Health Aff (Millwood) ; 41(9): 1333-1341, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067426

RESUMO

Between 2008 and 2018, six states and Washington, D.C., began contracting with enrollment brokers to facilitate enrollment into Medicaid, joining the eighteen states that already had such contracts in place as of 2008. Using newly collected data covering all contracts between state Medicaid agencies and independent enrollment brokers during this period, we compared changes in Medicaid participation following the initiation of contracts with enrollment brokers with contemporaneous changes in Medicaid participation in states that never contracted with brokers. We found that contract initiation had no statistically significant effects on state-level Medicaid participation. We further found no evidence of other enrollment-related benefits, such as improved application processing times.


Assuntos
Medicaid , Humanos , Governo Estadual , Estados Unidos , Washington
19.
Angew Chem Int Ed Engl ; 61(31): e202206012, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642627

RESUMO

The high activation barrier, inferior rate performance, and short cycling life severely constrain the practical applications of the high-capacity Li2 S cathode. Herein, we fabricate a Li2 S-Cu nanocomposite with a drastically reduced activation potential, fast rate capability, and extraordinary cycling stability even under a practically relevant areal capacity of 2.96 mAh cm-2 . Detailed experimental investigations aided by theoretical calculations indicate that instead of converting to S8 via troublesome soluble lithium polysulfides, Li2 S is thermodynamically and kinetically more favorable to react with Cu by the displacement reaction, which alters the redox couple from Li2 S/S to Cu/Cu2 S, leading to the excellent electrochemical performance. Moreover, the stability of the composite is demonstrated in the full-cell configuration consisting of commercial graphite anodes. This work provides an innovative and effective approach to realize highly activated and stable Li2 S cathode materials.

20.
Plant Physiol ; 189(2): 1037-1049, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35238391

RESUMO

The regulatory mechanisms that link WRKY gene expression to fruit ripening are largely unknown. Using transgenic approaches, we showed that a WRKY gene from wild strawberry (Fragaria vesca), FvWRKY48, may be involved in fruit softening and ripening. We showed that FvWRKY48 is localized to the nucleus and that degradation of the pectin cell wall polymer homogalacturonan, which is present in the middle lamella and tricellular junction zones of the fruit, was greater in FvWRKY48-OE (overexpressing) fruits than in empty vector (EV)-transformed fruits and less substantial in FvWRKY48-RNAi (RNA interference) fruits. Transcriptomic analysis indicated that the expression of pectate lyase A (FvPLA) was significantly downregulated in the FvWRKY48-RNAi receptacle. We determined that FvWRKY48 bound to the FvPLA promoter via a W-box element through yeast one-hybrid, electrophoretic mobility shift, and chromatin immunoprecipitation quantitative polymerase chain reaction experiments, and ß-glucosidase activity assays suggested that this binding promotes pectate lyase activity. In addition, softening and pectin degradation were more intense in FvPLA-OE fruit than in EV fruit, and the middle lamella and tricellular junction zones were denser in FvPLA-RNAi fruit than in EV fruit. We speculated that FvWRKY48 maybe increase the expression of FvPLA, resulting in pectin degradation and fruit softening.


Assuntos
Fragaria , Parede Celular/genética , Parede Celular/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeo-Liases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...