Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Microbiol Spectr ; : e0379623, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712963

RESUMO

Cyclic GMP-AMP synthase (cGAS) is an important DNA pattern recognition receptor that senses double-stranded DNA derived from invading pathogens or self DNA in cytoplasm, leading to an antiviral interferon response. A tick-borne Bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), is an RNA virus that causes a severe emerging viral hemorrhagic fever in Asia with a high case fatality rate of up to 30%. However, it is unclear whether cGAS interacts with SFTSV infection. In this study, we found that SFTSV infection upregulated cGAS RNA transcription and protein expression, indicating that cGAS is an important innate immune response against SFTSV infection. The mechanism of cGAS recognizing SFTSV is by cGAS interacting with misplaced mitochondrial DNA in the cytoplasm. Depletion of mitochondrial DNA significantly inhibited cGAS activation under SFTSV infection. Strikingly, we found that SFTSV nucleoprotein (N) induced cGAS degradation in a dose-dependent manner. Mechanically, N interacted with the 161-382 domain of cGAS and linked the cGAS to LC3. The cGAS-N-LC3 trimer was targeted to N-induced autophagy, and the cGAS was degraded in autolysosome. Taken together, our study discovered a novel antagonistic mechanism of RNA viruses, SFTSV is able to suppress the cGAS-dependent antiviral innate immune responses through N-hijacking cGAS into N-induced autophagy. Our results indicated that SFTSV N is an important virulence factor of SFTSV in mediating host antiviral immune responses. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne RNA virus that is widespread in East and Southeast Asian countries with a high fatality rate of up to 30%. Up to now, many cytoplasmic pattern recognition receptors, such as RIG-I, MDA5, and SAFA, have been reported to recognize SFTSV genomic RNA and trigger interferon-dependent antiviral responses. However, current knowledge is not clear whether SFTSV can be recognized by DNA sensor cyclic GMP-AMP synthase (cGAS). Our study demonstrated that cGAS could recognize SFTSV infection via ectopic mitochondrial DNA, and the activated cGAS-stimulator of interferon genes signaling pathway could significantly inhibit SFTSV replication. Importantly, we further uncovered a novel mechanism of SFTSV to inhibit innate immune responses by the degradation of cGAS. cGAS was degraded in N-induced autophagy. Collectively, this study illustrated a novel virulence factor of SFTSV to suppress innate immune responses through autophagy-dependent cGAS degradation.

2.
Autophagy ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762760

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) nonstructural protein (NSs) is an important viral virulence factor that sequesters multiple antiviral proteins into inclusion bodies to escape the antiviral innate immune response. However, the mechanism of the NSs restricting host innate immunity remains largely elusive. Here, we found that the NSs induced complete macroautophagy/autophagy by interacting with the CCD domain of BECN1, thereby promoting the formation of a BECN1-dependent autophagy initiation complex. Importantly, our data showed that the NSs sequestered antiviral proteins such as TBK1 into autophagic vesicles, and therefore promoted the degradation of TBK1 and other antiviral proteins. In addition, the 8A mutant of NSs reduced the induction of BECN1-dependent autophagy flux and degradation of antiviral immune proteins. In conclusion, our results indicated that SFTSV NSs sequesters antiviral proteins into autophagic vesicles for degradation and to escape antiviral immune responses.

3.
Brain Pathol ; : e13277, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779803

RESUMO

Growing evidence indicates that non-neuronal oligodendrocyte plays an important role in Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. In patient's brain, the impaired myelin structure is a pathological feature with the observation of TDP-43 in cytoplasm of oligodendrocyte. However, the mechanism underlying the gain of function by TDP-43 in oligodendrocytes, which are vital for the axonal integrity, remains unclear. Recently, we found that the primate-specific cleavage of truncated TDP-43 fragments occurred in cytoplasm of monkey neural cells. This finding opened up the avenue to investigate the myelin integrity affected by pathogenic TDP-43 in oligodendrocytes. In current study, we demonstrated that the truncated TDP-35 in oligodendrocytes specifically, could lead to the dysfunctional demyelination in corpus callosum of monkey. As a consequence of the interaction of myelin regulatory factor with the accumulated TDP-35 in cytoplasm, the downstream myelin-associated genes expression was downregulated at the transcriptional level. Our study aims to investigate the potential effect on myelin structure injury, affected by the truncated TDP-43 in oligodendrocyte, which provided the additional clues on the gain of function during the progressive pathogenesis and symptoms in TDP-43 related diseases.

4.
Plant Physiol Biochem ; 212: 108737, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38763003

RESUMO

Over evolutionary time, plants have developed sophisticated regulatory mechanisms to adapt to fluctuating nitrogen (N) environments, ensuring that their growth is balanced with their responses to N stress. This study explored the potential of L-tryptophan (Trp) in regulating sorghum root growth under conditions of N limitation. Here, two distinct sorghum genotypes (low-N tolerance 398B and low-N sensitive CS3541) were utilized for investigating effect of low-N stress on root morphology and conducting a comparative transcriptomics analysis. Our foundings indicated that 398B exhibited longer roots, greater root dry weights, and a higher Trp content compared to CS3541 under low-N conditions. Furthermore, transcriptome analysis revealed substantial differences in gene expression profiles related to Trp pathway and carbon (C) and N metabolism pathways between the two genotypes. Additional experiments were conducted to assess the effects of exogenous Trp treatment on the interplay between sorghum root growth and low-N tolerance. Our observations showed that Trp-treated plants developed longer root and had elevated levels of Trp and IAA under low-N conditons. Concurrently, these plants demonstrated stronger physiological activities in C and N metabolism when subjected to low-N stress. These results underscored the pivotal role of Trp on root growth and low-N stress responses by balancing IAA levels and C and N metabolism. This study not only deepens our understanding of how plants maintain growth plasticity during environmental stress but also provides valuable insights into the availability of amino acid in crops, which could be instrumental in developing strategies for promoting crop resilience to N deficiency.

5.
Sci Adv ; 10(20): eadl2036, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758800

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.


Assuntos
Corpo Estriado , Proteína Huntingtina , Doença de Huntington , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ubiquitinação , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética , Animais , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Camundongos , Humanos , Modelos Animais de Doenças , Neurônios/metabolismo , Neurônios/patologia , Proteólise , Primatas
6.
Nanoscale Horiz ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757185

RESUMO

Antibacterial nanoagents have been increasingly developed due to their favorable biocompatibility, cost-effective raw materials, and alternative chemical or optical properties. Nevertheless, there is still a pressing need for antibacterial nanoagents that exhibit outstanding bacteria-binding capabilities and high antibacterial efficiency. In this study, we constructed a multifunctional cascade bioreactor (GCDCO) as a novel antibacterial agent. This involved incorporating carbon dots (CDs), cobalt sulfide quantum dots (CoSx QDs), and glucose oxidase (GOx) to enhance bacterial inhibition under sunlight irradiation. The GCDCO demonstrated highly efficient antibacterial capabilities attributed to its favorable photothermal properties, photodynamic activity, as well as the synergistic effects of hyperthermia, glucose-augmented chemodynamic action, and additional photodynamic activity. Within this cascade bioreactor, CDs played the role of a photosensitizer for photodynamic therapy (PDT), capable of generating ˙O2- even under solar light irradiation. The CoSx QDs not only functioned as a catalytic component to decompose hydrogen peroxide (H2O2) and generate hydroxyl radicals (˙OH), but they also served as heat generators to enhance the Fenton-like catalysis process. Furthermore, GOx was incorporated into this cascade bioreactor to internally supply H2O2 by consuming glucose for a Fenton-like reaction. As a result, GCDCO could generate a substantial amount of reactive oxygen species (ROS), leading to a significant synergistic effect that greatly induced bacterial death. Furthermore, the in vitro antibacterial experiment revealed that GCDCO displayed notably enhanced antibacterial activity against E. coli (99+ %) when combined with glucose under simulated sunlight, surpassing the efficacy of the individual components. This underscores its remarkable efficiency in combating bacterial growth. Taken together, our GCDCO demonstrates significant potential for use in the routine treatment of skin infections among diabetic patients.

7.
RSC Adv ; 14(15): 10390-10396, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38567334

RESUMO

Proton exchange membrane water electrolysis (PEMWE) is a promising technology for green hydrogen production. However, its large-scale commercial application is limited by its high precious metal loading, because low catalyst loading leads to reduced electron transport channels and decreased water transportation, etc. Herein, we study the electrode level strategy for reducing Ir loading by the optimization of the micro-structure of the anode catalyst layer via SnO2 doping. The pore structure and electron conductive network of the anode catalyst layer can be simultaneously improved by SnO2 doping, under appropriate conditions. Therefore, mass transfer polarization and ohmic polarization of the single cell are reduced. Moreover, the enhanced pore structure and improved electron conduction network collectively contribute to a decreased occurrence of charge transfer polarization. By this strategy, the performance of the single cell with the Ir loading of 1.5 mg cm-2 approaches the single cell with the higher Ir loading of 2.0 mg cm-2, which means that SnO2 doping saves about 25% loading of Ir. This paper provides a perspective at the electrode level to reduce the precious metal loading of the anode in PEMWE.

8.
Nanoscale ; 16(17): 8378-8389, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602041

RESUMO

Bacterial infection is one of the most serious clinical complications, with life-threatening outcomes. Nature-inspired biomaterials offer appealing microscale and nanoscale architectures that are often hard to fabricate by traditional technologies. Inspired by the light-harvesting nature, we engineered sulfuric acid-treated sunflower sporopollenin exine-derived microcapsules (HSECs) to capture light and bacteria for antimicrobial photothermal therapy. Sulfuric acid-treated HSECs show a greatly enhanced photothermal performance and a strong bacteria-capturing ability against Gram-positive bacteria. This is attributed to the hierarchical micro/nanostructure and surface chemistry alteration of HSECs. To test the potential for clinical application, an in situ bacteria-capturing, near-infrared (NIR) light-triggered hydrogel made of HSECs and curdlan is applied in photothermal therapy for infected skin wounds. HSECs and curdlan suspension that spread on bacteria-infected skin wounds of mice first capture the local bacteria and then form hydrogels on the wound upon NIR light stimulation. The combination shows a superior antibacterial efficiency of 98.4% compared to NIR therapy alone and achieved a wound healing ratio of 89.4%. The current study suggests that the bacteria-capturing ability and photothermal properties make HSECs an excellent platform for the phototherapy of bacteria-infected diseases. Future work that can fully take advantage of the hierarchical micro/nanostructure of HSECs for multiple biomedical applications is highly promising and desirable.


Assuntos
Biopolímeros , Cápsulas , Carotenoides , Helianthus , Terapia Fototérmica , Pólen , Animais , Camundongos , Helianthus/química , Pólen/química , Cápsulas/química , Antibacterianos/química , Antibacterianos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Raios Infravermelhos
9.
ACS Biomater Sci Eng ; 10(4): 2282-2298, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526450

RESUMO

Allergic rhinitis (AR) is a type-I hypersensitivity disease mediated by immunoglobulin E (IgE). Although antihistamines, glucocorticoids, leukotriene receptor antagonists, and other drugs are widely used to treat AR, the various adverse side effects of long-term use of these drugs should not be ignored. Therefore, more effective and safe natural alternative strategies are urgently needed. To this end, this study designed a nanosupramolecular delivery system composed of ß-cyclodextrin supramolecular polymer (PCD), thiolated chitosan (TCS), and natural polyphenol epigallocatechin gallate (EGCG) for intranasal topical continuous treatment of AR. The TCS/PCD@EGCG nanocarriers exhibited an excellent performance in terms of retention and permeability in the nasal mucosa and released the vast majority of EGCG responsively in the nasal microenvironment, thus resulting in the significantly high antibacterial and antioxidant capacities. According to the in vitro model, compared with free EGCG, TCS/PCD@EGCG inhibited mast cell activity and abnormal histamine secretion in a more long-term and sustained manner. According to the in vivo model, whether in the presence of continuous or intermittent administration, TCS/PCD@EGCG substantially inhibited the secretion of allergenic factors and inflammatory factors, mitigated the pathological changes of nasal mucosa, alleviated the symptoms of rhinitis in mice, and produced a satisfactory therapeutic effect on AR. In particular, the therapeutic effect of TCS/PCD@EGCG systems were even superior to that of budesonide during intermittent treatment. Therefore, the TCS/PCD@EGCG nanocarrier is a potential long-lasting antiallergic medicine for the treatment of AR.


Assuntos
Catequina/análogos & derivados , Rinite Alérgica , Animais , Camundongos , Rinite Alérgica/tratamento farmacológico , Alérgenos/uso terapêutico , Administração Intranasal , Imunoglobulina E/uso terapêutico
10.
Bioact Mater ; 37: 222-238, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38549772

RESUMO

The synchronized development of mineralized bone and blood vessels is a fundamental requirement for successful bone tissue regeneration. Adequate energy production forms the cornerstone supporting new bone formation. ETS variant 2 (ETV2) has been identified as a transcription factor that promotes energy metabolism reprogramming and facilitates the coordination between osteogenesis and angiogenesis. In vitro molecular experiments have demonstrated that ETV2 enhances osteogenic differentiation of dental pulp stem cells (DPSCs) by regulating the ETV2- prolyl hydroxylase 2 (PHD2)- hypoxia-inducible factor-1α (HIF-1α)- vascular endothelial growth factor A (VEGFA) axis. Notably, ETV2 achieves the rapid reprogramming of energy metabolism by simultaneously accelerating mitochondrial aerobic respiration and glycolysis, thus fulfilling the energy requirements essential to expedite osteogenic differentiation. Furthermore, decreased α-ketoglutarate release from ETV2-modified DPSCs contributes to microcirculation reconstruction. Additionally, we engineered hydroxyapatite/chitosan microspheres (HA/CS MS) with biomimetic nanostructures to facilitate multiple ETV2-DPSC functions and further enhanced the osteogenic differentiation. Animal experiments have validated the synergistic effect of ETV2-modified DPSCs and HA/CS MS in promoting the critical-size bone defect regeneration. In summary, this study offers a novel treatment approach for vascularized bone tissue regeneration that relies on energy metabolism activation and the maintenance of a stable local hypoxia signaling state.

11.
Fish Shellfish Immunol ; 145: 109350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168633

RESUMO

The transforming growth factor beta regulator 1 (TBRG1) is a growth inhibitory protein that acts as a tumor suppressor in human cancers, gaining its name for the transcriptional regulation by TGF-ß. While extensive research has been conducted on the tumor-related function of TBRG1 in mammals, its significance in invertebrates remains largely unexplored. In this study, a homolog of TBRG1 was first structurally and functionally analyzed in the red swamp crayfish Procambarus clarkii. The full-length cDNA sequence was 2143 base pairs (bp) with a 1305 bp open reading frame (ORF) encoding a deduced protein of 434 amino acids (aa). The changes of PcTBRG1 transcripts upon immune challenges indicated its involvement in innate immunity. After knocking down PcTBRG1, the decline of bacteria clearance capacity revealed the participation of PcTBRG1 in the immune response. Furthermore, the downregulation of AMPs' expression after the cotreatment of RNAi and bacteria challenge suggested that PcTBRG1 might participate in innate immunity through regulating AMPs' expression. These results provided initial insight into the immune-related function of TBRG1 in invertebrates.


Assuntos
Astacoidea , Regulação da Expressão Gênica , Humanos , Animais , Sequência de Aminoácidos , Imunidade Inata/genética , Interferência de RNA , Proteínas de Artrópodes/genética , Mamíferos , Proteínas Nucleares/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
12.
Langmuir ; 40(3): 1902-1908, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38194665

RESUMO

Self-assemblies of two fluorenone-based derivatives (FE and FEC) consisting of a central 2,7-diphenyl-9-fluorenone polar moiety but differing in the flexible terminal groups were investigated by scanning tunneling microscopy (STM) at the 1-octanoic acid/HOPG interface under different concentrations and density functional theory calculation (DFT). STM results reveal a concentration-dependent polymorphic self-assembly behavior for FE, but without the presence of co-adsorbed solvents. As the concentration decreases, the dimer, bracket-like, and ribbon-like self-assembled structures were observed. On the contrary, FEC molecules assemble into only a type of oval-shaped morphology by the intermolecular N···H-O hydrogen bonds with the solvent molecules. Combined with DFT calculations, it can be deduced that the intermolecular van der Waals forces, dipole-dipole interactions, and hydrogen bonding are the main driving forces to stabilize the molecular packing of fluorenone-based polycatenars with strong polarity. Our work is of significance at the molecular level to further clarify the intermolecular interactions and conformational effects on the formation of molecular packing structures with liquid crystal property.

13.
Environ Pollut ; 344: 123315, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185353

RESUMO

Isoprothiolane (IPT) and tricyclazole (TCZ) are widely used in rice farming and recently in combined rice-fish farming. However, co-cultured animals are affected by these pesticides. To investigate the organismal effects and toxicity of pesticides, crayfish were exposed to 0, 1, 10, or 100 ppt TCZ or IPT for 7 days. Pesticide bioaccumulation, survival rate, metabolic parameters, structure of intestinal flora, and antioxidant-, apoptosis-, and HSP-related gene expression were determined. Pesticide exposure caused bioaccumulation of IPT or TCZ in the hepatopancreas and muscles of crayfish; however, IPT bioaccumulation was higher than that of TCZ. Both groups showed significant changes in hepatopancreatic serum biochemical parameters. Mitochondrial damage and chromosomal agglutination were observed in hepatopancreatic cells exposed to 100 ppt IPT or TCZ. IPT induced more significant changes in serum biochemical parameters than TCZ. The results of intestinal flora showed that Vibro, Flavobacterium, Anaerorhabdus and Shewanella may have potential for use as a bacterial marker of TCZ and IPT. Antioxidant-, apoptosis-, and HSP-related gene expression was disrupted by pesticide exposure, and was more seriously affected by IPT. The results suggest that IPT or TCZ induce hepatopancreatic cell toxicity; however, IPT or TCZ content in dietary crayfish exposed to 1 ppt was below the food safety residue standard. The data indicated that IPT exposure may be more toxic than TCZ exposure in hepatopancreas and intestines and toxicity of organism are alleviated by activating the pathway of stress-response, providing an understanding of pesticide compounds in rice-fish farming and food safety.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Praguicidas , Tiazóis , Tiofenos , Animais , Antioxidantes/metabolismo , Praguicidas/metabolismo , Astacoidea/metabolismo , Medição de Risco
14.
Adv Sci (Weinh) ; 11(9): e2307279, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084485

RESUMO

Architected materials comprising periodic arrangements of cells have attracted considerable interest in various fields because of their unconventional properties and versatile functionality. Although some better properties may be exhibited when this homogeneous layout is broken, most such studies rely on a fixed material geometry, which limits the design space for material properties. Here, combining heterogeneous and homogeneous assembly of cells to generate tunable geometries, a hierarchically architected material (HAM) capable of significantly enhancing mechanical properties is proposed. Guided by the theoretical model and 745 752 simulation cases, generic design criteria are introduced, including dual screening for unique mechanical properties and careful assembly of specific spatial layouts, to identify the geometry of materials with extreme properties. Such criteria facilitate the potential for unprecedented properties such as Young's modulus at the theoretical limit and tunable positive and negative Poisson's ratios in an ultra-large range. Therefore, this study opens a new paradigm for materials with extreme mechanical properties.

15.
Biomacromolecules ; 25(1): 315-327, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38100369

RESUMO

Glycopolymer-supported silver nanoparticles (AgNPs) have demonstrated a promising alternative to antibiotics for the treatment of multidrug-resistant bacteria-infected diseases. In this contribution, we report a class of biohybrid glycopolymersome-supported AgNPs, which are capable of effectively killing multidrug-resistant bacteria and disrupting related biofilms. First of all, glycopolymersomes with controllable structures were massively fabricated through reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA) in an aqueous solution driven by complementary hydrogen bonding interaction between the pyridine and amide groups of N-(2-methylpyridine)-acrylamide (MPA) monomers. Subsequently, Ag+ captured by glycopolymersomes through the coordination between pyridine-N and Ag+ was reduced into AgNPs stabilized by glycopolymersomes upon addition of the NaBH4 reducing agent, leading to the formation of the glycopolymersome@AgNPs biohybrid. As a result, they showed a wide-spectrum and enhanced removal of multidrug-resistant bacteria and biofilms compared to naked AgNPs due to the easier adhesion onto the bacterial surface and diffusion into biofilms through the specific protein-carbohydrate recognition. Moreover, the in vivo results revealed that the obtained biohybrid glycopolymersomes not only demonstrated an effective treatment for inhibiting the cariogenic bacteria but also were able to repair the demineralization of caries via accumulating Ca2+ through the recognition between carbohydrates and Ca2+. Furthermore, glycopolymersomes@AgNPs showed quite low in vitro hemolysis and cytotoxicity and almost negligible acute toxicity in vivo. Overall, this type of biohybrid glycopolymersome@AgNPs nanomaterial provides a new avenue for enhanced antibacterial and antibiofilm activities and the effective treatment of oral microbial-infected diseases.


Assuntos
Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Bactérias , Carboidratos/farmacologia , Piridinas , Testes de Sensibilidade Microbiana
16.
Anal Chem ; 95(51): 18859-18870, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096265

RESUMO

Trivalent Au ions are easily reduced to be zerovalent atoms by coexisting reductant reagents, resulting in the subsequent accumulation of Au atoms and formation of plasmonic nanostructures. In the absence of stabilizers or presence of weak stabilizers, aggregative growth of Au nanoparticles (NPs) always occurs, and unregular multidimensional Au materials are consequently constructed. Herein, the addition of nanomole-level mercury ions can efficiently prevent the epitaxial accumulation of Au atoms, and separated Au NPs with mediated morphologies and superior plasmonic characteristics are obtained. Experimental results and theoretical simulation demonstrate the Hg-concentration-reliant formation of plasmonic nanostructures with their mediated sizes and shapes in the presence of weak reductants. Moreover, the sensitive plasmonic responses of reaction systems exhibit selectivity comparable to that of Hg species. As a concept of proof, polymeric carbon dots (CDs) were used as the initial reductant, and the reactions between trivalent Au and CDs were studies. Significantly, Hg atoms prevent the epitaxial accumulation of Au atoms, and plasmonic NPs with decreased sizes were in situ synthesized, corresponding to varied surface plasmonic resonance absorption performance of the CD-induced hybrids. Moreover, with the integration of sensing substrates of CD-doped hydrogels, superior response stabilities, analysis selectivity, and sensitivity of Hg2+ ions were achieved on the basis of the mercury-mediated in situ chemical reactions between trivalent Au ions and reductant CDs. Consequently, a high-performance sensing strategy with the use of Au NP-staining hydrogels (nanostaining hydrogels) was exhibited. In addition to Hg sensing, the nanostaining hydrogels facilitated by doping of emerging materials and advanced chem/biostrategies can be developed as high-performance on-site monitoring routes to various pollutant species.

17.
Fish Shellfish Immunol ; 143: 109183, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884105

RESUMO

Smad,a member of the TGF-ß superfamily,controls cell proliferation,growth and guiding cell differentiation, thus playing a crucial role in diseases. However, the presence as well as specific function of Smad in crabs is still unknown. In this study, two Smads (Smad1 and Smad2/3) were identified for the first time from the mud crab Scylla paramamosain. The complete open reading frames of SpSmad1 and SpSmad2/3 were 1,497bp and 1,338bp, encoding deduced proteins of 498 and 445 amino acids respectively. Moreover, under the administration of Vibrio alginolyticus and WSSV, the relative expression levels of SpSmad1 and SpSmad2/3 were significantly increased, indicating their involvement in the innate immune response of mud crabs. Knockdown of SpSmad1 and SpSmad2/3 in vivo not only led to the increasement of the expressions of NF-κB signaling genes and antimicrobial peptides genes, but also significantly affected the bacterial clearance process of mud crabs. Additionally, overexpression of SpSmad1 and SpSmad2/3 in HEK293T cells could markedly activate NF-κB signaling. These results indicated that Smad1 and Smad2/3 participated in the innate immunity of Scylla paramamosain, and might provide a better understanding of the presence and immune regulatory functions of Smad1 and Smad2/3 in crabs and even invertebrates.


Assuntos
Braquiúros , NF-kappa B , Humanos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Drosophila/genética , Drosophila/metabolismo , Células HEK293 , Filogenia , Proteínas de Artrópodes , Imunidade Inata/genética , Perfilação da Expressão Gênica
18.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894652

RESUMO

Limited light absorption and rapid photo-generated carriers' recombination pose significant challenges to the practical applications of photocatalysts. In this study, we employed an efficient approach by combining the slow-photon effect with Z-scheme charge transfer to enhance the photo-degradation performance of antibiotics. Specifically, we incorporated 0D ZnIn2S4 quantum dots (QDs) into a 3D hierarchical inverse opal (IO) TiO2 structure through a facile one-step process. This combination enhanced the visible light absorption and provided abundant active surfaces for efficient photo-degradation. Moreover, the ZnIn2S4 QDs formed an artificial Z-scheme system with IO-TiO2, facilitating the separation and migration of charge carriers. To achieve a better band alignment with IO-TiO2, we doped Ag into the ZnIn2S4 QDs (Ag: ZIS QDs) to adjust their energy levels. Through an investigation of the different Ag contents in the ZnIn2S4 QDs, we found that the optimal photo-degradation performance was achieved with Ag (2.0): ZIS QDs/IO-TiO2, exhibiting degradation rates 19.5 and 14.8 times higher than those of ZnIn2S4 QDs and IO-TiO2, respectively. This study provides significant insights for elevating the photocatalytic capabilities of IO-TiO2 and broadening its prospective applications.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37889121

RESUMO

Slow healing of wounds induces great pain in diabetic patients. However, developing new approaches to promote diabetic wound healing is still one of the toughest challenges in the medical field. Here, we constructed a new double-layer hydrogel to effectively regulate reactive oxygen species (ROS) on the wound and promote diabetic wound healing. The inner layer contains glucose oxidase (Gox), ferrocene-modified quaternary ammonium chitosan (Fc-QCs), and poly(ß-cyclodextrin) (Pß-CD), which is used to generate hydroxyl radicals (•OH) for antibacterial in the early stage of wound healing and collapses gradually. The outer layer is composed of gelatin and dopamine. In the later stage of wound healing, the outer layer contacts the skin, which is beneficial for ROS clearance on the wound. Antibacterial, ROS scavenging, and wound healing experiments have shown that the double-layer hydrogel possesses two-stage ROS regulating properties for programmed diabetic wound healing. In conclusion, it will be one of the most potential dressings for treating diabetic wounds in the future.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37756376

RESUMO

Extensive bone fractures, which can seriously impact both health and quality of life, cannot easily heal naturally, especially if the patient has an underlying medical condition or is aging. The most promising approach to addressing such fractures is bone regeneration through bone tissue engineering. Bone regeneration is a complex process that consists of three distinct phases: inflammation, repair, and remodeling. Macrophages play a bridging role between the various cells involved in each stage of bone regeneration, interacting with different microenvironments and advancing the bone healing process. Although the origin and function of macrophages have been extensively studied, the mechanisms underlying their interaction with the bone healing microenvironment remain unexplored, including the association of microenvironmental changes with macrophage reprogramming and the role of macrophages in cells in the microenvironment. This review summarizes the bone regeneration process and recent advances in research on interactions between macrophages and the bone healing microenvironment and discusses novel biological strategies to promote bone regeneration by modulating macrophages for the treatment of bone injury and loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...