Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 665: 491-499, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537593

RESUMO

Zinc-iodine batteries (ZIBs) have been recognized as a promising energy storage device due to their high energy density, low cost and environmental friendliness. However, the development of ZIBs is hindered by the shuttle effect of polyiodides which results in capacity degradation and poor cycling performance. Inspired by the ability of starch to form inclusion compounds with iodine, we propose to use a starch gel on the cathode to suppress the shuttle of polyiodides. Herein, porous carbon is utilized as a host for iodine species and provides an excellent conductive network, while starch gel is used as another host to suppress polyiodides shuttle, resulting in improved battery performance. The test results demonstrate that the conversion between I-/I2/I3- in the cathode and the effective inclusion role of starch suppress the shuttle of polyiodides during the charging process. Meanwhile, based on the electrochemical tests and theoretical DFT calculations, it is found that starch has a stronger ability to adsorb polyiodides compared to carbon materials, which enables effective confinement of polyiodides. The ZIBs used the cathode with starch gel exhibit high coulombic efficiency (>95 % at 0.2 A/g) and low self-discharge (86.8 % after resting for 24 h). This strategy is characterized by its simplicity, low cost and high applicability, making it significant for the advancement of high-performance ZIBs.

2.
Small Methods ; 8(3): e2301309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018349

RESUMO

Fusobacterium nucleatum (Fn) existing in the community of colorectal cancer (CRC) promotes CRC progression and causes chemotherapy resistance. Despite great efforts that have been made to overcome Fn-induced chemotherapy resistance by co-delivering antibacterial agents and chemotherapeutic drugs, increasing the drug-loading capacity and enabling controlled release of drugs remain challenging. In this study, a novel supramolecular upconversion nanoparticle (SUNP) is constructed by incorporating a positively charged polymer (PAMAM-LA-CD) with Fn inhibition capacity, a negatively charged platinum (IV) oxaliplatin prodrug (OXA-COOH), upconversion nanoparticle (UCNPs) and polyethylene glycol-azobenzene (PEG-Azo) to enhance drug-loading and enable on-demand drug release for drug-resistant CRC treatment. SUNPs exhibit high drug-loading capacity (30.8%) and good structural stability under normal physiological conditions, while disassembled upon exogenous NIR excitation and endogenous azo reductase in the CRC microenvironment to trigger drug release. In vitro and in vivo studies demonstrate that SUNPs presented good biocompatibility and robust performance to overcome chemoresistance, thereby significantly inhibiting Fn-infected cancer cell proliferation. This study leverages multiple dynamic chemical designs to integrate both advantages of drug loading and release in a single system, which provides a promising candidate for precision therapy of bacterial-related drug-resistant cancers.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Humanos , Fusobacterium nucleatum/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Nanomedicina , Microambiente Tumoral
3.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687060

RESUMO

Redox-induced magnetic transformation in organic diradicals is an appealing phenomenon. In this study, we theoretically designed twelve couples of diradicals in which two nitroxide (NO) radical groups are connected to the redox-active couplers including p-benzoquinonyl, 1,4-naphthoquinyl, 9,10-anthraquinonyl, naphthacene-5,12-dione, pentacene-6,13-dione, hexacene-6,15-dione, pyrazinyl, quinoxalinyl, phenazinyl, 5,12-diazanaphthacene, 6,13-diazapentacene, and 6,15-diazahexacene. As evidenced at both the B3LYP and M06-2X levels of theory, the calculations reveal that the magnetic reversal can take place from ferromagnetism to antiferromagnetism, or vice versa, by means of redox method in these designed organic magnetic molecules. It was observed that p-benzoquinonyl, 1,4-naphthoquinyl, 9,10-anthraquinonyl, naphthacene-5,12-dione, pentacene-6,13-dione, and hexacene-6,15-dione-bridged NO diradicals produce antiferromagnetism while their dihydrogenated counterparts exhibit ferromagnetism. Similarly, pyrazinyl, quinoxalinyl, phenazinyl, 5,12-diazanaphthacene, 6,13-diazapentacene, and 6,15-diazahexacene-bridged NO diradicals present ferromagnetism while their dihydrogenated counterparts show antiferromagnetism. The differences in the magnetic behaviors and magnetic magnitudes of each of the twelve couples of diradicals could be attributed to their distinctly different spin-interacting pathways. It was found that the nature of the coupler and the length of the coupling path are important factors in controlling the magnitude of the magnetic exchange coupling constant J. Specifically, smaller HOMO-LUMO (HOMO: highest occupied molecular orbital, LUMO: lowest unoccupied molecular orbital) gaps of the couplers and shorter coupler lengths, as well as shorter linking bond lengths, can attain stronger magnetic interactions. In addition, a diradical with an extensively π-conjugated structure is beneficial to spin transport and can effectively promote magnetic coupling, yielding a large |J| accordingly. That is, a larger spin polarization can give rise to a stronger magnetic interaction. The sign of J for these studied diradicals can be predicted from the spin alternation rule, the shape of the singly occupied molecular orbitals (SOMOs), and the SOMO-SOMO energy gaps of the triplet state. This study paves the way for the rational design of magnetic molecular switches.

4.
J Colloid Interface Sci ; 645: 76-85, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37146381

RESUMO

Component regulation and microstructure design are two effective strategies to adjust electromagnetic parameters and improve the microwave absorption performance of materials. In this study, a facile synthesis strategy consisting of ultrasonic dispersion, blast drying, and roasting is proposed to build a sandwich-like graphene-based absorbent, in which Fe3O4 nanoparticles with adjustable content are sandwiched uniformly between reduced graphene oxide nanosheets. The sandwich structure can form multiple interfaces, prevent the aggregation of nanoparticles, facilitate interface polarization, and endow the material with multiple electromagnetic loss mechanisms, which is very beneficial for impedance matching and microwave attenuation. Notably, the effective absorption bandwidth achieves 5.7 GHz, and the minimum reflection loss value is -49.9 dB. In addition, the synthesis process is simple and suitable for large-scale production and possible industrial applications. Thus, this facile route to fabricate sandwich-like graphene-based absorbents provides new ideas and approaches for designing new graphene-based nanocomposites.

5.
Molecules ; 28(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110829

RESUMO

Biomass-derived hard carbon materials are considered as the most promising anode materials for sodium-ion batteries (SIBs) due to their abundant sources, environmental friendliness, and excellent electrochemical performance. Although much research exists on the effect of pyrolysis temperature on the microstructure of hard carbon materials, there are few reports that focus on the development of pore structure during the pyrolysis process. In this study, corncob is used as the raw material to synthesize hard carbon at a pyrolysis temperature of 1000~1600 °C, and their interrelationationship between pyrolysis temperature, microstructure and sodium storage properties are systematically studied. With the pyrolysis temperature increasing from 1000 °C to 1400 °C, the number of graphite microcrystal layers increases, the long-range order degree rises, and the pore structure shows a larger size and wide distribution. The specific capacity, the initial coulomb efficiency, and the rate performance of hard carbon materials improve simultaneously. However, as the pyrolysis temperature rises further to 1600 °C, the graphite-like layer begins to curl, and the number of graphite microcrystal layers reduces. In return, the electrochemical performance of the hard carbon material decreases. This model of pyrolysis temperatures-microstructure-sodium storage properties will provide a theoretical basis for the research and application of biomass hard carbon materials in SIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA