Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338790

RESUMO

Fishes' skeletal muscles are crucial for swimming and are differentiated into slow-twitch muscles (SM) and fast-twitch muscles (FM) based on physiological and metabolic properties. Consequently, mitochondrial characteristics (number and morphology) adapt to each fiber type's specific functional needs. However, the mechanisms governing mitochondrial adaptation to the specific bioenergetic requirements of each fiber type in teleosts remain unclear. To address this knowledge gap, we investigated the mitochondrial differences and mitochondrial homeostasis status (including biogenesis, autophagy, fission, and fusion) between SM and FM in teleosts using Takifugu rubripes as a representative model. Our findings reveal that SM mitochondria are more numerous and larger compared to FM. To adapt to the increased mitochondrial number and size, SM exhibit elevated mitochondrial biogenesis and dynamics (fission/fusion), yet show no differences in mitochondrial autophagy. Our study provides insights into the adaptive mechanisms shaping mitochondrial characteristics in teleost muscles. The abundance and elongation of mitochondria in SM are maintained through elevated mitochondrial biogenesis, fusion, and fission, suggesting an adaptive response to fulfill the bioenergetic demands of SM that rely extensively on OXPHOS in teleosts. Our findings enhance our understanding of mitochondrial adaptations in diverse muscle types among teleosts and shed light on the evolutionary strategies of bioenergetics in fishes.


Assuntos
Fibras Musculares Esqueléticas , Doenças Musculares , Humanos , Fibras Musculares Esqueléticas/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Homeostase
2.
Nat Commun ; 13(1): 7637, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496409

RESUMO

Although mitochondrial activity is critical for angiogenesis, its mechanism is not entirely clear. Here we show that mice with endothelial deficiency of any one of the three nuclear genes encoding for mitochondrial proteins, transcriptional factor (TFAM), respiratory complex IV component (COX10), or redox protein thioredoxin 2 (TRX2), exhibit retarded retinal vessel growth and arteriovenous malformations (AVM). Single-cell RNA-seq analyses indicate that retinal ECs from the three mutant mice have increased TGFß signaling and altered gene expressions associated with vascular maturation and extracellular matrix, correlating with vascular malformation and increased basement membrane thickening in microvesels of mutant retinas. Mechanistic studies suggest that mitochondrial dysfunction from Tfam, Cox10, or Trx2 depletion induces a mitochondrial localization and MAPKs-mediated phosphorylation of SMAD2, leading to enhanced ALK5-SMAD2 signaling. Importantly, pharmacological blockade of ALK5 signaling or genetic deficiency of SMAD2 prevented retinal vessel growth retardation and AVM in all three mutant mice. Our studies uncover a novel mechanism whereby mitochondrial dysfunction via the ALK5-SMAD2 signaling induces retinal vascular malformations, and have therapeutic values for the alleviation of angiogenesis-associated human retinal diseases.


Assuntos
Malformações Arteriovenosas , Receptor do Fator de Crescimento Transformador beta Tipo I , Proteína Smad2 , Animais , Camundongos , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo
3.
Sci Total Environ ; 853: 158557, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36084780

RESUMO

Hypoxia caused by global climate change and anthropogenic pollution has exposed marine species to increasing stress. Oxygen sensing mediated by prolyl hydroxylase (PHD) is regarded as the first line of defense under hypoxia exposure; however, the function of PHD in marine molluscan species remains unclear. In this study, we identified two PHD2 gene in the oyster Crassostrea gigas using phylogenetic tree analysis with 36 species, namely, CgPHD2A/B. Under hypoxia, the mRNA and protein expression of CgPHD2A displayed a time-dependent pattern, revealing a critical role in the response to hypoxia-induced stress. Observation of interactions between CgPHD2 and CgHIF-1α proteins under normoxia using co-immunoprecipitation and GST-pull down experiments showed that the ß2ß3 loop in CgPHD2A hydroxylates CgHIF-1α to promote its ubiquitination with CgVHL. With the protein recombination and site-directed mutagenesis, the hydroxylation domain and two target proline loci (P404A and 504A) in CgPHDs and CgHIF-1α were identified respectively. Moreover, the electrophoretic mobility-shift assay (EMSA) and luciferase double reporter gene assay revelaed that CgHIF-1α could regulate CgPHD2A expression through binding with the hypoxia-responsive element in the promoter region (320 bp upstream), forming a feedback loop. However, protein structure analysis indicated that six extra amino acids formed an α-helix in the ß2ß3 loop of CgPHD2B, inhibiting its activity. Overall, this study revealed that two CgPHD2 proteins have evolved, which encode enzymes with different activities in oyster, potentially representing a specific hypoxia-sensing mechanism in mollusks. Illustrating the functional diversity of CgPHDs could help to assess the physiological status of oyster and guide their aquaculture.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Crassostrea/metabolismo , Oxigênio/metabolismo , Filogenia , Hipóxia , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , RNA Mensageiro/genética , Prolina/genética , Aminoácidos
4.
PeerJ ; 10: e12720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378928

RESUMO

Fast-twitch and slow-twitch muscles are the two principal skeletal muscle types in teleost with obvious differences in metabolic and contractile phenotypes. The molecular mechanisms that control and maintain the different muscle types remain unclear yet. Pseudocaranx dentex is a highly mobile active pelagic fish with distinctly differentiated fast-twitch and slow-twitch muscles. Meanwhile, P. dentex has become a potential target species for deep-sea aquaculture because of its considerable economic value. To elucidate the molecular characteristics in the two muscle types of P. dentex, we generated 122 million and 130 million clean reads from fast-twitch and slow-witch muscles using RNA-Seq, respectively. Comparative transcriptome analysis revealed that 2,862 genes were differentially expressed. According to GO and KEGG analysis, the differentially expressed genes (DEGs) were mainly enriched in energy metabolism and skeletal muscle structure related pathways. Difference in the expression levels of specific genes for glycolytic and lipolysis provided molecular evidence for the differences in energy metabolic pathway between fast-twitch and slow-twitch muscles of P. dentex. Numerous genes encoding key enzymes of mitochondrial oxidative phosphorylation pathway were significantly upregulated at the mRNA expression level suggested slow-twitch muscle had a higher oxidative phosphorylation to ensure more energy supply. Meanwhile, expression patterns of the main skeletal muscle developmental genes were characterized, and the expression signatures of Sox8, Myod1, Calpain-3, Myogenin, and five insulin-like growth factors indicated that more myogenic cells of fast-twitch muscle in the differentiating state. The analysis of important skeletal muscle structural genes showed that muscle type-specific expression of myosin, troponin and tropomyosin may lead to the phenotypic structure differentiation. RT-qPCR analysis of twelve DEGs showed a good correlation with the transcriptome data and confirmed the reliability of the results presented in the study. The large-scale transcriptomic data generated in this study provided an overall insight into the thorough gene expression profiles of skeletal muscle in a highly mobile active pelagic fish, which could be valuable for further studies on molecular mechanisms responsible for the diversity and function of skeletal muscle.


Assuntos
Fibras Musculares de Contração Lenta , Doenças Musculares , Animais , Fibras Musculares de Contração Rápida , Reprodutibilidade dos Testes , Doenças Musculares/metabolismo , Peixes , Músculo Esquelético
5.
Arterioscler Thromb Vasc Biol ; 41(12): 2943-2960, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34670407

RESUMO

OBJECTIVE: Cerebral cavernous malformations (CCMs) can happen anywhere in the body, although they most commonly produce symptoms in the brain. The role of CCM genes in other vascular beds outside the brain and retina is not well-examined, although the 3 CCM-associated genes (CCM1, CCM2, and CCM3) are ubiquitously expressed in all tissues. We aimed to determine the role of CCM gene in lymphatics. Approach and Results: Mice with an inducible pan-endothelial cell (EC) or lymphatic EC deletion of Ccm3 (Pdcd10ECKO or Pdcd10LECKO) exhibit dilated lymphatic capillaries and collecting vessels with abnormal valve structure. Morphological alterations were correlated with lymphatic dysfunction in Pdcd10LECKO mice as determined by Evans blue dye and fluorescein isothiocyanate(FITC)-dextran transport assays. Pdcd10LECKO lymphatics had increased VEGFR3 (vascular endothelial growth factor receptor-3)-ERK1/2 (extracellular signal-regulated kinase 1/2) signaling with lymphatic hyperplasia. Mechanistic studies suggested that VEGFR3 is primarily regulated at a transcriptional level in Ccm3-deficient lymphatic ECs, in an NF-κB (nuclear factor κB)-dependent manner. CCM3 binds to importin alpha 2/KPNA2 (karyopherin subunit alpha 2), and a CCM3 deletion releases KPNA2 to activate NF-κB P65 by facilitating its nuclear translocation and P65-dependent VEGFR3 transcription. Moreover, increased VEGFR3 in lymphatic EC preferentially activates ERK1/2 signaling, which is critical for lymphatic EC proliferation. Importantly, inhibition of VEGFR3 or ERK1/2 rescued the lymphatic defects in structure and function. CONCLUSIONS: Our data demonstrate that CCM3 deletion augments the VEGFR3-ERK1/2 signaling in lymphatic EC that drives lymphatic hyperplasia and malformation and warrant further investigation on the potential clinical relevance of lymphatic dysfunction in patients with CCM.


Assuntos
Endotélio Linfático/fisiopatologia , Hemangioma Cavernoso do Sistema Nervoso Central/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Células Cultivadas , Células Endoteliais/fisiologia , Endotélio Linfático/patologia , Feminino , Deleção de Genes , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Hiperplasia , Masculino , Camundongos Endogâmicos , Modelos Animais , NF-kappa B/genética , Translocação Genética
6.
Genes (Basel) ; 12(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34440408

RESUMO

Pseudocaranx dentex (white trevally) which belongs to the Carangidae family, is an important commercial fishery and aquaculture resource in Asia. However, its evolution and population genetics have received little attention which was limited by the mitogenome information absence. Here, we sequenced and annotated the complete mitochondrial genome of P. dentex which was 16,569 bp in length, containing twenty-two tRNAs (transfer RNAs), thirteen PCGs (protein-coding genes), two rRNAs (ribosomal RNAs), and one non-coding region with conservative gene arrangement. The Ka/Ks ratio analysis among Carangidae fishes indicated the PCGs were suffering purify selection and the values were related to the taxonomic status and further influenced by their living habits. Phylogenetic analysis based on the PCGs sequences of mitogenomes among 36 species presented three major clades in Carangidae. According to the phylogenetic tree, we further analyzed the taxonomic confusion of Carangoides equula which was on the same branch with P. dentex but a different branch with Carangoides spp. We inferred Kaiwarinus equula should be the accepted name and belong to the independent Kaiwarinus genus which was the sister genus of Pseudocaranx. This work provides mitochondrial genetic information and verifies the taxonomic status of P. dentex, and further helps to recognize the phylogenetic relationship and evolutionary history of Carangidae.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Perciformes/genética , Filogenia , Animais , Códon , Perciformes/classificação
7.
Nat Commun ; 12(1): 504, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495460

RESUMO

Cerebral cavernous malformations (CCMs) are vascular abnormalities that primarily occur in adulthood and cause cerebral hemorrhage, stroke, and seizures. CCMs are thought to be initiated by endothelial cell (EC) loss of any one of the three Ccm genes: CCM1 (KRIT1), CCM2 (OSM), or CCM3 (PDCD10). Here we report that mice with a brain EC-specific deletion of Pdcd10 (Pdcd10BECKO) survive up to 6-12 months and develop bona fide CCM lesions in all regions of brain, allowing us to visualize the vascular dynamics of CCM lesions using transcranial two-photon microscopy. This approach reveals that CCMs initiate from protrusion at the level of capillary and post-capillary venules with gradual dissociation of pericytes. Microvascular beds in lesions are hyper-permeable, and these disorganized structures present endomucin-positive ECs and α-smooth muscle actin-positive pericytes. Caveolae in the endothelium of Pdcd10BECKO lesions are drastically increased, enhancing Tie2 signaling in Ccm3-deficient ECs. Moreover, genetic deletion of caveolin-1 or pharmacological blockade of Tie2 signaling effectively normalizes microvascular structure and barrier function with attenuated EC-pericyte disassociation and CCM lesion formation in Pdcd10BECKO mice. Our study establishes a chronic CCM model and uncovers a mechanism by which CCM3 mutation-induced caveolae-Tie2 signaling contributes to CCM pathogenesis.


Assuntos
Proteínas Reguladoras de Apoptose/deficiência , Encéfalo/metabolismo , Cavéolas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Receptor TIE-2/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Encéfalo/patologia , Encéfalo/ultraestrutura , Cavéolas/ultraestrutura , Células Cultivadas , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Humanos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Pericitos/metabolismo , Receptor TIE-2/genética , Transdução de Sinais , Análise de Sobrevida
8.
ACS Omega ; 5(34): 21355-21363, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905352

RESUMO

Free fatty acid receptor 4 (FFAR4) has various physiological functions, including energy regulation and immunological homeostasis. We examined the only FFAR4 homologue in the Pacific oyster Crassostrea gigas (CgFFAR4), which functions as a sensor of long-chain fatty acids. CgFFAR4 is 1098 bp long and contains a seven-transmembrane G protein-coupled receptor domain. CgFFAR4 expression was high in the hepatopancreas, but it was downregulated after fasting, indicating that it plays an essential role in food digestion. Lipopolysaccharide stimulation downregulated CgFFAR4 level, probably as an immune response of the animal. Reduced glycogen level alongside decreased insulin receptor, insulin receptor substrate, and C. gigas glycogen synthase transcription levels after CgFFAR4 knockdown revealed that CgFFAR4 was involved in the regulation of fatty acid and glycogen levels via the insulin pathway. Accordingly, this is the first study on an invertebrate FFAR and provides new insights into the role of this receptor in immune response and nutritional control.

9.
BMC Genomics ; 20(1): 625, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366319

RESUMO

BACKGROUND: Oyster is rich in glycogen and free amino acids and is called "the milk of sea". To understand the main genetic effects of these traits and the genetic networks underlying their correlation, we have conducted the whole genome resequencing with 427 oysters collected from the world-wide scale. RESULTS: After association analysis, 168 clustered significant single nucleotide polymorphism (SNP) loci were identified for glycogen content and 17 SNPs were verified with 288 oyster individuals in another wide populations. These were the most important candidate loci for oyster breeding. Among 24 genes in the 100-kb regions of the leading SNP loci, cytochrome P450 17A1 (CYP17A1) contained a non-synonymous SNP and displayed higher expressions in high glycogen content individuals. This might enhance the gluconeogenesis process by the transcriptionally regulating the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase). Also, for amino acids content, 417 clustered significant SNPs were identified. After genetic network analysis, three node SNP regions were identified to be associated with glycogen, protein, and Asp content, which might explain their significant correlation. CONCLUSION: Overall, this study provides insights into the genetic correlation among complex traits, which will facilitate future oyster functional studies and breeding through molecular design.


Assuntos
Crassostrea/genética , Crassostrea/metabolismo , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Nutrientes/metabolismo , Aminoácidos/metabolismo , Animais , Genótipo , Glicogênio/biossíntese , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas/metabolismo
10.
Nat Ecol Evol ; 2(11): 1751-1760, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30250157

RESUMO

The interplay between divergence and phenotypic plasticity is critical to our understanding of a species' adaptive potential under rapid climate changes. We investigated divergence and plasticity in natural populations of the Pacific oyster Crassostrea gigas with a congeneric oyster Crassostrea angulata from southern China used as an outgroup. Genome re-sequencing of 371 oysters revealed unexpected genetic divergence in a small area that coincided with phenotypic divergence in growth, physiology, heat tolerance and gene expression across environmental gradients. These findings suggest that selection and local adaptation are pervasive and, together with limited gene flow, influence population structure. Genes showing sequence differentiation between populations also diverged in transcriptional response to heat stress. Plasticity in gene expression is positively correlated with evolved divergence, indicating that plasticity is adaptive and favoured by organisms under dynamic environments. Divergence in heat tolerance-partly through acetylation-mediated energy depression-implies differentiation in adaptive potential. Trade-offs between growth and survival may play an important role in local adaptation of oysters and other marine invertebrates.


Assuntos
Adaptação Fisiológica , Crassostrea/fisiologia , Expressão Gênica , Variação Genética , Genoma , Animais , Crassostrea/genética
11.
BMC Genomics ; 18(1): 713, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893177

RESUMO

BACKGROUND: The Pacific oyster Crassostrea gigas is an important marine fishery resource, which contains high levels of glycogen that contributes to the flavor and the quality of the oyster. However, little is known about the molecular and chemical mechanisms underlying glycogen content differences in Pacific oysters. Using a homogeneous cultured Pacific oyster family, we explored these regulatory networks at the level of the metabolome and the transcriptome. RESULTS: Oysters with the highest and lowest natural glycogen content were selected for differential transcriptome and metabolome analysis. We identified 1888 differentially-expressed genes, seventy-five differentially-abundant metabolites, which are part of twenty-seven signaling pathways that were enriched using an integrated analysis of the interaction between the differentially-expressed genes and the differentially-abundant metabolites. Based on these results, we found that a high expression of carnitine O-palmitoyltransferase 2 (CPT2), indicative of increased fatty acid degradation, is associated with a lower glycogen content. Together, a high level of expression of phosphoenolpyruvate carboxykinase (PEPCK), and high levels of glucogenic amino acids likely underlie the increased glycogen production in high-glycogen oysters. In addition, the higher levels of the glycolytic enzymes hexokinase (HK) and pyruvate kinase (PK), as well as of the TCA cycle enzymes malate dehydrogenase (MDH) and pyruvate carboxylase (PYC), imply that there is a concomitant up-regulation of energy metabolism in high-glycogen oysters. High-glycogen oysters also appeared to have an increased ability to cope with stress, since the levels of the antioxidant glutathione peroxidase enzyme 5 (GPX5) gene were also increased. CONCLUSION: Our results suggest that amino acids and free fatty acids are closely related to glycogen content in oysters. In addition, oysters with a high glycogen content have a greater energy production capacity and a greater ability to cope with stress. These findings will not only provide insights into the molecular mechanisms underlying oyster quality, but also promote research into the molecular breeding of oysters.


Assuntos
Crassostrea/genética , Crassostrea/metabolismo , Perfilação da Expressão Gênica , Glicogênio/metabolismo , Metabolômica , Animais , Feminino , Masculino
12.
J Agric Food Chem ; 65(35): 7764-7773, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28780871

RESUMO

High glycogen levels in the Pacific oyster (Crassostrea gigas) contribute to its flavor, quality, and hardiness. Glycogenin (CgGN) is the priming glucosyltransferase that initiates glycogen biosynthesis. We characterized the full sequence and function of C. gigas CgGN. Three CgGN isoforms (CgGN-α, ß, and γ) containing alternative exon regions were isolated. CgGN expression varied seasonally in the adductor muscle and gonadal area and was the highest in the adductor muscle. Autoglycosylation of CgGN can interact with glycogen synthase (CgGS) to complete glycogen synthesis. Subcellular localization analysis showed that CgGN isoforms and CgGS were located in the cytoplasm. Additionally, a site-directed mutagenesis experiment revealed that the Tyr200Phe and Tyr202Phe mutations could affect CgGN autoglycosylation. This is the first study of glycogenin function in marine bivalves. These findings will improve our understanding of glycogen synthesis and accumulation mechanisms in mollusks. The data are potentially useful for breeding high-glycogen oysters.


Assuntos
Crassostrea/genética , Glicogênio/biossíntese , Frutos do Mar/análise , Animais , Crassostrea/enzimologia , Crassostrea/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
13.
PLoS One ; 12(3): e0174007, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28328985

RESUMO

Single nucleotide polymorphisms (SNPs) are widely used in genetics and genomics research. The Pacific oyster (Crassostrea gigas) is an economically and ecologically important marine bivalve, and it possesses one of the highest levels of genomic DNA variation among animal species. Pacific oyster SNPs have been extensively investigated; however, the mechanisms by which these SNPs may be used in a high-throughput, transferable, and economical manner remain to be elucidated. Here, we constructed an oyster 190K SNP array using Affymetrix Axiom genotyping technology. We designed 190,420 SNPs on the chip; these SNPs were selected from 54 million SNPs identified through re-sequencing of 472 Pacific oysters collected in China, Japan, Korea, and Canada. Our genotyping results indicated that 133,984 (70.4%) SNPs were polymorphic and successfully converted on the chip. The SNPs were distributed evenly throughout the oyster genome, located in 3,595 scaffolds with a length of ~509.4 million; the average interval spacing was 4,210 bp. In addition, 111,158 SNPs were distributed in 21,050 coding genes, with an average of 5.3 SNPs per gene. In comparison with genotypes obtained through re-sequencing, ~69% of the converted SNPs had a concordance rate of >0.971; the mean concordance rate was 0.966. Evaluation based on genotypes of full-sib family individuals revealed that the average genotyping accuracy rate was 0.975. Carrying 133 K polymorphic SNPs, our oyster 190K SNP array is the first commercially available high-density SNP chip for mollusks, with the highest throughput. It represents a valuable tool for oyster genome-wide association studies, fine linkage mapping, and population genetics.


Assuntos
Crassostrea/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Canadá , China , Mapeamento Cromossômico/métodos , Genoma/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Japão , Análise de Sequência com Séries de Oligonucleotídeos/métodos , República da Coreia , Análise de Sequência de DNA/métodos , Frutos do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...