Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Small ; : e2402076, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757424

RESUMO

High-rate lithium/sodium ion batteries or capacitors are the most promising functional units to achieve fast energy storage that highly depends on charge host materials. Host materials with lamellar structures are a good choice for hybrid charge storage hosts (capacitor or redox type). Emerging layered transition metal carbo-chalcogenides (TMCC) with homogeneous sulfur termination are especially attractive for charge storage. Using density functional theory calculations, six of 30 potential TMCC are screened to be stable, metallic, anisotropic in electronic conduction and mechanical properties due to the lamellar structures. Raman, infrared active modes and frequencies of the six TMCC are well assigned. Interlayer coupling, especially binding energies predict that the bulk layered materials can be easily exfoliated into 2D monolayers. Moreover, Ti2S2C, Zr2S2C are identified as the most gifted Li+/Na+ anode materials with relatively high capacities, moderate volume expansion, relatively low Li+/Na+ migration barriers for batteries or ion-hybrid capacitors. This work provides a foundation for rational materials design, synthesis, and identification of the emerging 2D family of TMCC.

2.
Anal Chim Acta ; 1308: 342614, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740455

RESUMO

Metal-organic frameworks (MOFs) have been used to detect uric acid (UA), but still very challenging to achieve a low detection limit due to the low inferior conductivity of MOFs. Herein, three different N-doped ZIF-67-derived carbons were synthesized for the first time by one-step co-pyrolysis of 2-methylimidazole with cobalt nitrate (CN), cobalt acetate (CA) or cobalt chloride (CC) toward UA sensing. Afterwards, the cobalt nitrate-derived Co particle (Co/CN) supported by N-doped ZIF-67-derived carbon displays extremely low detection limit and high sensitivity for UA, outperformed all reported MOFs-based UA sensors. More interestingly, it was discovered that the high valence Co4+ within the Co/CN sample produced in high-acidic environment can intercalate in the frame for a bridge adsorption between two reaction sites, which boosted simultaneous 2-electron transfer, while Co3+ only allows an end-adsorption structure for one-electron transfer being the rate determining step. Furthermore, the bridge adsorption mode of UA on Co4+ -based catalyst was also verified by theoretical DFT calculations and XPS experiment. This work holds great promise for a selective and sensitive UA sensor for practical bioscience and clinic diagnostic applications while shedding lights in fundamental research for innovative designs and developments of high-sensitive electrochemical sensors.

3.
Mikrochim Acta ; 191(5): 243, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575711

RESUMO

PEDOT: PSS has been used as a biomimetic uric acid (UA) sensor but suffers from unfortunate low detection limit (LOD), narrow detection range and poor stability. Herein, we get graphdiyne (GDY) marry PEDOT:PSS to create a very stable GDY@PEDOT:PSS heterostructure for a biomimetic UA sensor, which accomplishes the lowest LOD (6 nM), the widest detection range (0.03 µM-7 mM) and the longest stability (98.1% for 35 days) among the related UA sensors. The sensor was successfully used to in situ real-time detection of  UA in sweat. The enhancement mechanisms of the sensor were investigated, and results discover that C≡C of GDY and C = C of PEDOT:PSS can cross-link each other by π-π interactions, making not only the former strongly resistant against oxidation deterioration, but also causes the latter to efficiently prevent water swelling of polymer for poor conductivity, thereby leading to high stability from both components. While the stabilized heterostructure can also offer more active sites by enhanced absorption of UA via π-π interactions for highly sensitive detection of UA. This work holds great promise for a practical sweat UA sensor while providing scientific insight to design a stable and electrocatalytically active structure from two unstable components.


Assuntos
Grafite , Suor , Ácido Úrico , Limite de Detecção
4.
Anal Chem ; 96(19): 7609-7617, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687631

RESUMO

MicroRNAs (miRNAs) play vital roles in biological activities, but their in vivo imaging is still challenging due to the low abundance and the lack of efficient fluorescent tools. RNA aptamers with high affinity and low background emerge for bioimaging yet suffering from low brightness. We introduce a rational design based on target-mediated entropy-driven toehold exchange (EDTE) to induce the release of RNA aptamer and subsequently light up corresponding fluorophore, which achieves selective imaging of miRNAs with good stability in both living cells and tumor-bearing mouse. Through tailoring recognition unit of the EDTE probes, highly sensitive imaging of different miRNAs including miRNA-125b and miRNA-21 is achieved, confirming its universal bioimaging applications. In comparison with the reported "one-to-one" model, the EDTE strategy shows a remarkable 4.6-time improvement in signal/noise ratio for intracellular imaging of the same miRNA. Particularly, it realizes sensitive imaging of miRNA in vivo, providing a promising tool in investigating functions and interactions of disease-associated miRNAs.


Assuntos
Aptâmeros de Nucleotídeos , Entropia , Corantes Fluorescentes , MicroRNAs , MicroRNAs/análise , MicroRNAs/metabolismo , Aptâmeros de Nucleotídeos/química , Animais , Corantes Fluorescentes/química , Camundongos , Humanos , Imagem Óptica , Camundongos Nus
5.
Bioelectrochemistry ; 158: 108712, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636365

RESUMO

The main challenges (sluggish electron transfer, low energy density) hinder the future application of enzymatic biofuel cells (EBFCs), which urgent to take effective measures to solve these issues. In this work, a composite of Au nanoparticles decorated graphdiyne (AuNPs@GDY) is fabricated and employed as the carrier of enzyme (G6PDH), and a mechanism based on π-π interaction of electron transfer is proposed to understand bioelectrocatalysis processes. The results show that the AuNPs@GDY composite exhibits the highest current density among the three materials (GDY, AuNPs, and AuNPs@GDY), which is 3.4 times higher than that of GDY and 2.5 times higher than that of AuNPs. Furthermore, the results reveal that the AuNPs could increase the loading of enzymes and provide more active site for reaction, while GDY provides highly π-conjugated structure and unique sp/sp2-hybridized linkages interface. This work provides new insights to explore a theoretical basis for the development of more efficient bioelectrocatalytic systems.


Assuntos
Fontes de Energia Bioelétrica , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Biocatálise , Grafite/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Técnicas Eletroquímicas/métodos
6.
Small ; : e2400700, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488718

RESUMO

Solar-driven carbon dioxide (CO2 ) methanation holds significant research value in the context of carbon emission reduction and energy crisis. However, this eight-electron catalytic reaction presents substantial challenges in catalytic activity and selectivity. In this regard, researchers have conducted extensive exploration and achieved significant developments. This review provides an overview of the recent advances and challenges in efficient selective photocatalytic CO2 methanation. It begins by discussing the fundamental principles and challenges in detail, analyzing strategies for improving the efficiency of photocatalytic CO2 conversion to CH4 comprehensively. Subsequently, it outlines the recent applications and advanced characterization methods for photocatalytic CO2 methanation. Finally, this review highlights the prospects and opportunities in this area, aiming to inspire CO2 conversion into high-value CH4 and shed light on the research of catalytic mechanisms.

7.
J Phys Chem Lett ; 15(12): 3258-3266, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488769

RESUMO

The active component of copper-based materials for electrocatalytic nitrate reduction to ammonia (NRA) remains unclear due to the susceptibility of oxidation of copper. Using density functional theory calculations, NRA pathways are evaluated on low-index crystal surfaces Cu2O (111), CuO (111), and Cu (111) at different pH. Cu2O (111), with abundant undercoordinated Cu atoms on the surface, shows easier adsorption of NO3- than Cu (111) or CuO (111). NRA on CuO (111) is hindered by the large ΔG of adsorption of NO3- and hydrogenation of *NO. Thus, Cu (111) and Cu2O (111) contribute most to the NRA activity while CuO (111) is inert. Three key steps of NRA on copper-based catalysts are identified: adsorption of NO3-, *NO → *NOH/*NHO, and *NH3 desorption, as the three can be rate-determining steps depending on the local environment. Moreover, previous experimentally detected NH2OH on copper-based catalysts may come from the NRA on Cu2O (111) as the most probable pathway on Cu2O (111) is NO3- → *NO3 → *NO2 → *NO → *NHO → *NHOH → *NH2OH → *NH2 → *NH3 → *NH3(g). At high reduction potential, CuOx would be reduced into Cu, so the effective active substance for NRA in a strong reduction environment is Cu.

8.
Adv Sci (Weinh) ; 11(19): e2308668, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477515

RESUMO

Vanadium nitride (VN) is a potential cathode material with high capacity and high energy density for aqueous zinc batteries (AZIBs). However, the slow kinetics resulting from the strong electrostatic interaction of the electrode materials with zinc ions is a major challenge for fast storage. Here, VN clusters with nitrogen-vacancy embedded in carbon (C) (Nv-VN/C-SS-2) are prepared for the first time to improve the slow reaction kinetics. The nitrogen vacancies can effectively accelerate the reaction kinetics, reduce the electrochemical polarization, and improve the performance. The density functional theory (DFT) calculations also prove that the rapid adsorption and desorption of zinc ions on Nv-VN/C-SS-2 can release more electrons to the delocalized electron cloud of the material, thus adding more active sites. The Nv-VN/C-SS-2 exhibits a specific capacity and outstanding cycle life. Meanwhile, the quasi-solid-state battery exhibits a high capacity of 186.5 mAh g-1, ultra-high energy density of 278.9 Wh kg-1, and a high power density of 2375.1 W kg-1 at 2.5 A g-1, showing excellent electrochemical performance. This work provides a meaningful reference value for improving the comprehensive electrochemical performance of VN through interface engineering.

9.
Adv Healthc Mater ; : e2304591, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528711

RESUMO

The emerging cell death modality of ferroptosis has garnered increasing attention for antitumor treatment but still suffers from low therapeutic efficacy. A metal-organic frameworks (MOFs)-based magnetic nanozyme (PZFH) comprising porphyrin-based Zr-MOF (PCN) on zinc ferrite (ZF) nanoparticles modified with hyaluronic acid, delivering excellent magnetophotonic response for efficient ferroptosis, is reported here. PZFH shows multienzyme-like cascade activity encompassing a photon-triggered oxidase-like catalysis to generate O2 -, which is converted to H2O2 by superoxide dismutase-like activity and subsequent ·OH by magneto-promoted peroxidase (POD) behavior. Newly formed Fe─N coordination and increased Fe2+/Fe3+ levels in the PZFH contribute to the enhanced POD activity, which is further enhanced by accelerated surface electron transfer when exposure to alternated magnetic field. Accumulation of lipid peroxides is eventually accomplished through the conversion of ·OH radicals and singlet oxygen (1O2) produced through laser irradiation. When combined with the depletion of inhibition of glutathione and glutathione peroxidase 4, PZFH exhibits significantly enhanced ferroptosis in tumor-bearing mice, offering insights into nanomedicine for ferroptosis and holding great promise in clinical antitumor therapies.

10.
Chemphyschem ; : e202400141, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462507

RESUMO

The most challenging obstacle for photocatalysts to efficiently harvest solar energy is the sluggish surface redox reaction (e. g., oxygen evolution reaction, OER) kinetics, which is believed to originate from interface catalysis rather than the semiconductor photophysics. In this work, we developed a light-modulated transient photocurrent (LMTPC) method for investigating surface charge accumulation and reaction on the W-doped bismuth vanadate (W : BiVO4) photoanodes during photoelectrochemical water oxidation. Under illuminating conditions, the steady photocurrent corresponds to the charge transfer rate/kinetics, while the integration of photocurrent (I~t) spikes during the dark period is regarded as the charge density under illumination. Quantitative analysis of the surface hole densities and photocurrents at 0.6 V vs. reversible hydrogen electrode results in an interesting rate-law kinetics switch: a 3rd-order charge reaction behavior appeared on W : BiVO4, but a 2nd-order charge reaction occurred on W : BiVO4 surface modified with ultrathin Bi metal-organic-framework (Bi-MOF). Consequently, the photocurrent for water oxidation on W : BiVO4/Bi-MOF displayed a 50 % increment. The reaction kinetics alternation with new interface reconstruction is proposed for new mechanism understanding and/or high-performance photocatalytic applications.

11.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324759

RESUMO

Point-of-care testing (POCT) has attracted great interest because of its prominent advantages of rapidness, precision, portability, and real-time monitoring, thus becoming a powerful biomedical device in early clinical diagnosis and convenient medical treatments. However, its complicated manufacturing process and high expense severely impede mass production and broad applications. Herein, an innovative but inexpensive integrated sandwich-paper three-dimensional (3D) cell sensing device is fabricated to in situ wirelessly detect H2O2 released from living cells. The paper-based electrochemical sensing device was constructed by a sealed sandwiched bottom plastic film/fiber paper/top hole-centered plastic film that was printed with patterned electrodes. A new (Fe, Mn)3(PO4)2/N-doped carbon nanorod was developed and immobilized on the sensing carbon electrode while cell culture solution filled the exposed fiber paper, allowing living cells to grow on the fiber paper surrounding the electrode. Due to the significantly shortening diffusion distance to access the sensing sites by such a unique device and a rationally tuned ratio of Fe2+/Mn2+, the device exhibits a fast response time (0.2 s), a low detection limit (0.4 µM), and a wide detection range (2-3200 µM). This work offers great promise for a low-cost and highly sensitive POCT device for practical clinic diagnosis and broad POCT biomedical applications.

12.
Adv Biol (Weinh) ; 8(4): e2300668, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327153

RESUMO

DNA methyltransferase is significant in cellular activities and gene expression, and its aberrant expression is closely linked to various cancers during initiation and progression. Currently, there is a great demand for reliable and label-free techniques for DNA methyltransferase evaluation in tumor diagnosis and cancer therapy. Herein, a low-background fluorescent RNA aptamer-based sensing approach for label-free quantification of cytosine-guanine (CpG) dinucleotides methyltransferase (M.SssI) is reported. The fluorogenic light-up RNA aptamers-based strategy exhibits high selectivity via restriction endonuclease, padlock-based recognition, and RNA transcription. By combining rolling circle amplification (RCA), and RNA transcription with fluorescence response of RNA aptamers of Spinach-dye compound, the proposed platform exhibited efficiently ultrahigh sensitivity toward M.SssI. Eventually, the detection can be achieved in a linear range of 0.02-100 U mL-1 with a detection limit of 1.6 × 10-3 U mL-1. Owing to these superior features, the method is further applied in serum samples spiked M.SssI, which delivers a recovery ranging from 92.0 to 107.0% and a relative standard deviation <7.0%, providing a promising and practical tool for determining M.SssI in complex biological matrices.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/genética , Metilases de Modificação do DNA , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/metabolismo , RNA
13.
J Mater Chem B ; 12(6): 1404-1428, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38251275

RESUMO

Magnetic two-dimensional nanocomposites (M2D NCs) that synergistically combine magnetic nanomedicine and 2D nanomaterials have emerged in multimodal antitumor therapy, attracting great interest in materials science and biomedical engineering. This review provides a summary of the recent advances of M2D NCs and their multimodal antitumor applications. We first introduce the design and fabrication of M2D NCs, followed by discussing new types of M2D NCs that have been recently reported. Then, a detailed analysis and discussions about the different types of M2D NCs are presented based on the structural categories of 2D NMs, including 2D graphene, transition metal dichalcogenides (TMDs), transition metal carbides/nitrides/carbonitrides (MXenes), black phosphorus (BP), layered double hydroxides (LDHs), metal organic frameworks (MOFs), covalent organic frameworks (COFs) and other 2D nanomaterials. In particular, we focus on the synthesis strategies, magnetic or optical responsive performance, and the versatile antitumor applications, which include magnetic hyperthermia therapy (MHT), photothermal therapy (PTT), photodynamic therapy (PDT), drug delivery, immunotherapy and multimodal imaging. We conclude the review by proposing future developments with an emphasis on the mass production and biodegradation mechanism of the M2D NCs. This work is expected to provide a comprehensive overview to researchers and engineers who are interested in such a research field and promote the clinical translation of M2D NCs in practical applications.


Assuntos
Hipertermia Induzida , Nanocompostos , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico , Nanocompostos/química , Fenômenos Magnéticos
14.
Small ; 20(1): e2304938, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649198

RESUMO

Materials with various single-transition metal atoms dispersed in nitrogenated carbons (M─N─C, M = Fe, Co, and Ni) are synthesized as cathodes to investigate the electrocatalytic behaviors focusing on their enhancement mechanism for performance of Li-S batteries. Results indicate that the order of both electrocatalytic activity and rate capacity for the M─N─C catalysts is Co > Ni > Fe, and the Co─N─C delivers the highest capacity of 1100 mAh g-1 at 1 C and longtime stability at a decay rate of 0.05% per cycle for 1000 cycles, demonstrating excellent battery performance. Theoretical calculations for the first time reveal that M─N─N─C catalysts enable direct conversion of Li2 S6 to Li2 S rather than Li2 S4 to Li2 S by stronger adsorption with Li2 S6 , which also has an order of Co > Ni > Fe. And Co─N─C has the strongest adsorption energy, not only rendering the highest electrocatalytic activity, but also depressing the polysulfides' dissolution into electrolyte for the longest cycle life. This work offers an avenue to design the next generation of highly efficient sulfur cathodes for high-performance Li-S batteries, while shedding light on the fundamental insight of single metal atomic catalytic effects on Li-S batteries.

15.
Chem Commun (Camb) ; 59(84): 12601-12604, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37791467

RESUMO

An "inside-out regulation" strategy is proposed to improve the Zn2+ storage of MnO by Ni doping into the lattice and graphene wrapping outside the nanoparticles. The as-prepared Ni-MnO@rGO exhibits 112 mA h g-1 at 2.0 A g-1 over 800 cycles, due to the improved transport of electrons and ions from the synergistical function of intrinsic doping and external graphene encapsulation.

16.
Gels ; 9(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37888377

RESUMO

Fractured-vuggy reservoirs are mainly composed of three types: underground rivers, vugs, and fractured-vuggy structures. Based on the similarity criterion, a 3D model can truly reflect the characteristics of the multi-scale space of a fractured-vuggy reservoir, and it can reflect fluid flow laws in the formation. Water flooding, gas flooding, and gel foam flooding were carried out in the model sequentially. Based on gas flooding, the enhanced recovery ratio of gel foam flooding in the underground river was approximately 12%. By changing the injection rate, the average recovery ratio of nitrogen flooding was 6.84% higher than that of other injection rates at 5 mL/min, and that of gel foam flooding was 1.88% higher than that of other injection rates at 5 mL/min. The experimental results showed that the gel foam induced four oil displacement mechanisms, which selectively plugged high-permeability channels, controlled the mobility ratio, reduced oil-water interfacial tension, and changed the wettability of rock surfaces. With different injection-production methods, gel foam flooding can spread across two underground river channels. Two cases of nitrogen flooding affected one underground river channel and two underground river channels. By adjusting the injection rate, it was found that after nitrogen flooding, there were mainly four types of residual oil, and gel foam flooding mainly yielded three types of remaining oil. This study verified the influencing factors of extracting residual oil from an underground river and provides theoretical support for the subsequent application of gel foam flooding in underground rivers.

17.
Chem Commun (Camb) ; 59(91): 13647-13650, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37905701

RESUMO

Tyrosine (Tyr) is a kind of amino acid that can regulate emotions and stimulate the nervous system, and it is of great importance to realize its ultrasensitive detection. A unique material of graphdiyne chelated AuNPs (GDY@AuNPs) is designed and developed to realize high-performance electrochemical sensing of Tyr. GDY promotes the absorption of Tyr via π-π interaction, and its CC strongly chelates with AuNPs for greatly improved sensitivity. GDY@AuNPs delivers a sensitivity of up to 181.2 µA mM-1 cm-2 and a wide range of 0.1-600 µM, among the best for carbon or AuNPs-based materials for the detection of Tyr. It demonstrates the accurate detection of Tyr in human sweat for potential practical applications.


Assuntos
Grafite , Nanopartículas Metálicas , Humanos , Tirosina , Ouro
18.
Int J Biol Macromol ; 253(Pt 4): 127086, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37769775

RESUMO

Antibacterial and anti-inflammatory nanofibrous membranes have attracted extensive attention, especially for the cutaneous wound treatment. In this study, zinc ions and ciprofloxacin-encapsulated chitosan/poly(ɛ-caprolactone) (CS/PCL) electrospun core-shell nanofibers were prepared by employing zinc ions-coordinated chitosan as the shell, and ciprofloxacin-functionalized PCL as the core. The morphology and core-shell structure of the as-prepared composite nanofibers were examined by SEM and TEM, respectively. The physical structure and mechanical property of the electrospun membrane were explored by FTIR, swelling, porosity and tensile test. Tensile strength of the zinc ions-coordinated CS/PCL composite nanofibers was enhanced to ca. 16 MPa. Meanwhile, the composite nanofibers can rapidly release of ciprofloxacin during 11 days and effectively suppress above 98 % of S. aureus proliferation. Moreover, the composite nanofibers exhibited excellent guide cell alignment and cyto-activity, as well as significantly down-regulated the inflammation factors, IL-6 and TNF-α in vitro. Animal experiments in vivo showed that the zinc ions-coordinated CS/PCL membrane by means of the synergistic effect of ciprofloxacin and active zinc ions, could significantly alleviate macrophage infiltration, promote collagen deposition and accelerate the healing process of wounds.


Assuntos
Quitosana , Nanofibras , Animais , Quitosana/farmacologia , Quitosana/química , Ciprofloxacina/farmacologia , Nanofibras/química , Zinco/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Íons/farmacologia , Poliésteres/química
19.
Small Methods ; 7(11): e2300791, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37555503

RESUMO

Noble metal-based metallenes are attracting intensive attention in energy catalysis, but it is still very challenging to precisely control the surface structures of metallenes for higher catalytic properties on account of their intrinsic thermodynamic instability. Herein, the synthesis of tensile-strained holey Pd metallene by oxidative etching is reported using hydrogen peroxide, which exhibits highly enhanced catalytic activity and stability in comparison with normal Pd metallene toward both oxygen reduction reaction and formic acid oxidation. The pre-prepared Pd metallene functions as a catalyst to decompose hydrogen peroxide, and the Pd atoms in amorphous regions of Pd metallene are preferentially removed by the introduced hydrogen peroxide during the etching process. The greatly enhanced ORR activity is mainly determined by the strong electrostatic repulsion between intermediate O* and the dopant O, which balances the adsorption strength of O* on Pd sites, ultimately endowing a weakened adsorption energy of O* on TH-Pd metallene. This work creates a facile and economical strategy to precisely shape metallene-based nanoarchitectures with broad applications for energy systems and sensing devices.

20.
Biosens Bioelectron ; 235: 115389, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216843

RESUMO

The yarn-based sweat-activated battery (SAB) is a promising energy source for textile electronics due to its excellent skin compatibility, great weavability, and stable electric output. However, its power density is too low to support real-time monitoring and wireless data transmission. Here, we developed a scalable, high-performance sweat-based yarn biosupercapacitor (SYBSC) with two symmetrically aligned electrodes made by wrapping hydrophilic cotton fibers on polypyrrole/poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate)-modified stainless steel yarns. Once activated with artificial sweat, the SYBSC could offer a high areal capacitance of 343.1 mF cm-2 at 0.5 mA cm-2. After 10,000 times of bending under continuous charge-discharge cycles and 25 cycles of machine washing, the device could retain the capacitance at rates of 68% and 73%, respectively. The SYBSCs were integrated with yarn-shaped SABs to produce hybrid self-charging power units. The hybrid units, pH sensing fibers, and a mini-analyzer were woven into a sweat-activated all-in-one sensing textile, in which the hybrid, self-charging units could power the analyzer for real-time data collection and wireless transmission. The all-in-one electronic textile could be successfully employed to real-time monitor the pH values of the volunteers' sweat during exercise. This work can promote the development of self-charging electronic textiles for monitoring human healthcare and exercise intensity.


Assuntos
Técnicas Biossensoriais , Polímeros , Humanos , Suor , Pirróis , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...