Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Oral Pathol Med ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39295197

RESUMO

BACKGROUND: Platelet-derived growth factor A (PDGFA) has been shown to be upregulated in several tumors, contributing to their malignant phenotypes. However, its expression and function in head and neck squamous cell carcinoma (HNSC) are not clearly understood. Thus, we aimed to evaluate this issue using bioinformatic analyses and primary experimental validation. METHODS: The expression of PDGFA was analyzed using popular bio-databases and further validated by RT-PCR and immunohistochemical staining. Survival analyses were then performed. The association between PDGFA expression levels and immune cell infiltration in the immune microenvironment was assessed. RESULTS: PDGFA has been found to be significantly upregulated in a variety of cancers, including HNSC, and increased PDGFA expression may be an independent prognostic factor associated with immune cell infiltration in HNSC. CONCLUSION: Overexpression of PDGFA in HNSC is significantly associated with poor prognosis and immune cell infiltration in the tumor microenvironment (TME). PDGFA has potential as a molecular indicator for diagnosis, prognosis, and immune processes in HNSC.

2.
Discov Oncol ; 15(1): 284, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012409

RESUMO

OBJECTIVE: Angiogenesis-associated genes (AAGs) play a critical role in cancer patient survival. However, there are insufficient reports on the prognostic value of AAGs in head and neck squamous cell carcinoma (HNSC). Therefore, this study aimed to investigate the correlation between AAG expression levels and survival in HNSC patients, explore the predictive value of signature genes and lay the groundwork for future in-depth research. METHODS: Relevant data for HNSC were obtained from the databases. AAGs-associated signature genes linked to prognosis were screened to construct a predictive model. Further analysis was conducted to determine the functional correlation of the signature genes. RESULTS: The signature genes (STC1, SERPINA5, APP, OLR1, and PDGFA) were used to construct prognostic models. Patients were divided into high-risk and low-risk groups based on the calculated risk scores. Survival analysis showed that patients in the high-risk group had a significantly lower overall survival than those in the low-risk group (P < 0.05). Therefore, this prognostic model was an independent prognostic factor for predicting HNSC. In addition, patients in the low-risk group were more sensitive to multiple anti-cancer drugs. Functional correlation analysis showed a good correlation between the characteristic genes and HNSC metastasis, invasion, and angiogenesis. CONCLUSION: This study established a new prognostic model for AAGs and may guide the selection of therapeutic agents for HNSC. These genes have important functions in the tumor microenvironment; it also provides a valuable resource for the future clinical trials investigating the relationship between HNSC and AAGs.

3.
J Sci Food Agric ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934557

RESUMO

BACKGROUND: Betel nut chewing is a significant risk factor for oral cancer due to arecoline, its primary active component. Resveratrol, a non-flavonoid polyphenol, possesses anti-cancer properties. It has been shown to inhibit arecoline-induced oral malignant cells in preliminary experiments but the underlying mechanism remains unclear. This research therefore aimed to explore the potential therapeutic targets of resveratrol in treating arecoline-induced oral cancer. METHODS: Data mining identified common targets and hub targets of resveratrol in arecoline-induced oral cancer. Gene set variation analysis (GSVA) was used to score and validate the expression and clinical significance of these hub targets in head and neck cancer (HNC) tissues. Molecular docking analysis was conducted on the hub targets. The effect of resveratrol intervention on hub targets was verified by experiments. RESULTS: Sixty-one common targets and 15 hub targets were identified. Hub targets were highly expressed in HNC and were associated with unfavorable prognoses. They played a role in HNC metastasis, epithelial-mesenchymal transition, and invasion. Their expression also affected immune cell infiltration and correlated negatively with sensitivity to chemotherapeutic agents such as bleomycin and docetaxel. Experiments demonstrated that resveratrol down-regulated the expression of the hub targets, inhibited their proliferation and invasion, and induced apoptosis. CONCLUSION: Resveratrol inhibits the arecoline-induced malignant phenotype of oral epithelial cells by regulating the expression of some target genes, suggesting that resveratrol may be used not only as an adjuvant treatment for oral cancer, but also as an adjuvant for oral cancer prevention due to its low toxicity and high efficacy. © 2024 Society of Chemical Industry.

4.
J Histochem Cytochem ; 72(6): 363-371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804681

RESUMO

Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck. Its pathogenesis is complicated and needs further investigation. The aim of this study was to investigate the expression and clinical significance of WWP1 in NPC. Bioinformatics approaches were used to evaluate the expression and functions of WWP1 in NPC. WWP1 protein expression was then detected by immunohistochemistry on a tissue microarray in an NPC cohort and its association with clinical features and prognosis was determined. In addition, WWP1 expression was knocked down in NPC cells using RNA interference, and their colony formation and invasion abilities were assessed. A total of 25 genes closely related to WWP1, which may be enriched in different pathways, were filtered out. WWP1 expression was significantly higher in NPC cells than in normal controls. High WWP1 expression was correlated with lymph node metastasis, tumor recurrence, clinical stage and poor prognosis. Knockdown of WWP1 resulted in attenuated proliferation and invasion of NPC cells. The results suggest that WWP1 may serve as a novel biomarker and prognostic factor for NPC and a potential therapeutic target worthy of further investigation.


Assuntos
Imuno-Histoquímica , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Ubiquitina-Proteína Ligases , Humanos , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/diagnóstico , Linhagem Celular Tumoral , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Adulto , Invasividade Neoplásica , Carcinoma/patologia , Carcinoma/metabolismo , Carcinoma/genética , Carcinoma/diagnóstico , Metástase Linfática , Regulação Neoplásica da Expressão Gênica , Relevância Clínica
5.
Plant Direct ; 8(2): e564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38312996

RESUMO

Barley is one of the world's earliest domesticated crops, which is widely used for beer production, animal feeding, and health care. Barley seed germination, particularly in increasingly saline soils, is key to ensure the safety of crop production. However, the mechanism of salt-affected seed germination in barley remains elusive. Here, two different colored barley varieties were used to independently study the regulation mechanism of salt tolerance during barley seed germination. High salinity delays barley seed germination by slowing down starch mobilization efficiency in seeds. The starch plate test revealed that salinity had a significant inhibitory effect on α-amylase activity in barley seeds. Further, NaCl treatment down-regulated the expression of Amy1, Amy2 and Amy3 genes in germinated seeds, thereby inhibiting α-amylase activity. In addition, the result of embryogenic culture system in vitro showed that the shoot elongation of barley was significantly inhibited by salt stress. These findings indicate that it is a feasible idea to study the regulation mechanism of salinity on barley seed germination and embryo growth from the aspect of starch-related source-sink communication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA