Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(2): 420-430, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403318

RESUMO

The chemical constituents of Schizonepetae Spica were qualitatively analyzed by UHPLC-Q-TOF-MS/MS. An Agilent poroshell 120 SB-C_(18) column(3.0 mm×100 mm, 2.7 µm) was used for gradient elution with 0.1% formic acid water(A)-acetonitrile(B) solution as mobile phase at the flow rate of 0.4 mL·min~(-1) and column temperature of 45 ℃. The data were collected by scanning in positive and negative ion modes, and the compounds were identified by comparison of reference materials and PeakView software. Ninety-seven compounds were identified from Schizonepetae Spica, including 28 flavonoids, 23 phenolic acids, 23 fatty acids, 15 terpenoids, and 8 other compounds. The UHPLC-Q-TOF-MS/MS method established in this study can identify the chemical components of Schizonepetae Spica rapidly, accurately, and comprehensively, and provide a basis for the basic study of pharmacodynamic substances of Schizonepetae Spica.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Flavonoides/análise , Terpenos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38362695

RESUMO

AIM AND OBJECTIVE: Zuogui pill (ZGP) is the traditional Chinese medicine for tonifying kidney yin. Clinical and animal studies have shown that ZGP effectively enhances neurologic impairment after ischemic stroke, which may be related to promoting neurite outgrowth. This investigation aimed to prove the pro-neurite outgrowth impact of ZGP and define the underlying molecular pathway in vitro. MATERIALS AND METHODS: The major biochemical components in the ZGP were investigated using UPLC-QTOF-MS. All-trans retinoic acid (ATRA) was employed to stimulate SH-SY5Y cells to develop into mature neurons, followed by oxygen-glucose deprivation and reoxygenation damage (OGD/R). Then the cells were supplemented with different concentrations of ZGP, and cell viability was identified by CCK-8. The neurites' outgrowth abilities were detected by wound healing test, while immunofluorescence staining of ß-III-tubulin was used to label neurites and measure their length. Western blot was employed to discover the changes in protein levels. RESULTS: ZGP improved the cell viability of differentiated SH-SY5Y cells following OGD/R damage, according to the CCK-8 assay. Concurrently, ZGP promoted neurite outgrowth and improved neurite crossing and migration ability. Protein expression analysis showed that ZGP upregulated the expression of GAP43, OPN, p-IGF-1R, mTOR, and p-S6 proteins but downregulated the expression of PTEN protein. Blocking assay with IGF-1R specific inhibitor Linstinib suggested IGF-1R mediated mTOR signaling pathway was involved in the pro-neurite outgrowth effect of ZGP. CONCLUSION: This work illustrated the molecular mechanism underpinning ZGP's action and offered more proof of its ability to promote neurite outgrowth and regeneration following ischemic stroke.

3.
Ann Med Surg (Lond) ; 86(1): 172-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222693

RESUMO

Background: Depression is becoming an urgent mental health problem. Si-Ni-San has been widely used to treat depression, yet its underlying pharmacological mechanism is poorly understood. Thus, we aim to explore the antidepressant mechanism of Si-Ni-San by chemical analysis and in-silico methods. Methods: Compounds in Si-Ni-San were determined by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Then, bioactive compounds were obtained from Traditional Chinese Medicines for Systems Pharmacology Database and Analysis Platform and SwissADME, and the potential targets of which were acquired from SwissTargetPrediction. Depression-related targets were collected from GeneCards. The intersection between compound-related targets and depression-related targets were screened out, and the overlapped targets were further performed protein-protein interaction, biological functional and pathway enrichment analysis. Finally, networks of Si-Ni-San against depression were constructed and visualized by Cytoscape. Results: One hundred nineteen compounds in Si-Ni-San were determined, of which 24 bioactive compounds were obtained. Then, 137 overlapped targets of Si-Ni-San against depression were collected. AKT1, PIK3R1, PIK3CA, mTOR, MAPK1 and MAPK8 were the key targets. Furthermore, PI3K-Akt signalling pathway, serotonergic synapse, MAPK signalling pathway and neurotrophin signalling pathway were involved in the antidepressant mechanism of Si-Ni-San. It showed that components like sinensetin, hesperetin, liquiritigenin, naringenin, quercetin, albiflorin and paeoniflorin were the mainly key active compounds for the antidepressant effect of Si-Ni-San. Conclusions: This study demonstrated the key components, key targets and potential pharmacological mechanisms of Si-Ni-San against depression. These results indicate that Si-Ni-San is a promising therapeutic approach for treatment of depression, and may provide evidence for the research and development of drugs for treating depression.

4.
Front Pharmacol ; 14: 1153478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426810

RESUMO

Due to its high mortality, incidence and disability rates, ischemic stroke poses heavy economic burdens to families and society. Zuogui Pill (ZGP) is a classic Chinese medicine for tonifying the kidney, which is effective for the recovery of neurological function after ischemic stroke. However, Zuogui Pill has not been evaluated for its potential effects on ischemic strokes. Using network pharmacology, the research aimed to explore the mechanisms of Zuogui Pill on ischemic stroke, which were further validated in SH-SY5Y cells injured by oxygen and glucose deprivation/reperfusion (OGD/R). Network analysis of Zuogui Pill identified 86 active ingredients and 107 compound-related targets correlated with ischemic stroke. Additionally, 11 core active compounds were obtained, such as Quercetin, beta sitosterol, and stigmasterol. Most of the compounds have been proven to have pharmacological activities. Based on pathway enrichment studies, Zuogui Pill may exert neuroprotection through MAPK signaling, PI3K-Akt signaling and apoptosis, as well as enhance neurite outgrowth and axonal regeneration effect via mTOR signaling, p53 signaling and Wnt signaling pathways. In vitro experiment, the viability of ischemic neuron treated with Zuogui Pill was increased, and the ability of neurite outgrowth was significantly improved. Western blot assays shown that the pro-neurite outgrowth effect of Zuogui Pill on ischemic stroke may be relate to PTEN/mTOR signal pathway. The results of the study provided new insights into Zuogui Pill's molecular mechanism in treatment of ischemic stroke, as well as clinical references for its use.

5.
J Sep Sci ; 46(10): e2200953, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905224

RESUMO

Qishen Gubiao granules, a traditional Chinese medicine preparation composed of nine herbs, have been widely used to prevent and treat coronavirus disease 2019 with good clinical efficacy. In the present study, an integrated strategy based on chemical profiling followed by network pharmacology and molecular docking was employed, to explore the active components and potential molecular mechanisms of Qishen Gubiao granules in the therapy of coronavirus disease 2019. Using the ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry technique, a total of 186 ingredients corresponding to eight structure types in Qishen Gubiao preparation were identified or structurally annotated with the elucidation of the fragmentation pathways in the typical compounds. The network pharmacology analysis screened 28 key compounds including quercetin, apigenin, scutellarein, luteolin and naringenin acting on 31 key targets, which possibly modulated signal pathways associated with immune and inflammatory responses in the treatment of coronavirus disease 2019. The molecular docking results observed that the top 5 core compounds had a high affinity for angiotensin-converting enzyme 2 and 3-chymotrypsin-like protease. This study proposed a reliable and feasible approach for elucidating the multi-components, multi-targets, and multi-pathways intervention mechanism of Qishen Gubiao granules against coronavirus disease 2019, providing a scientific basis for its further quality evaluation and clinical application.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Humanos , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicina Tradicional Chinesa , Espectrometria de Massas
6.
Cancer Med ; 12(4): 5158-5171, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36161527

RESUMO

BACKGROUND: Early detection of pancreatic ductal adenocarcinoma (PDAC) may improve the prognosis of patients. This study was to identify metabolic features of PDAC and to discover early detection biomarkers for PDAC by tissue and serum metabolomics analysis. METHODS: We conducted nontargeted metabolomics analysis in tissue samples of 51 PDAC tumors, 40 noncancerous pancreatic tissues (NT), and 14 benign pancreatic neoplasms (BP) as well as serum samples from 80 patients with PDAC, 36 with BP, and 48 healthy controls (Ctr). The candidate metabolites identified from the initial analysis were further quantified using targeted analysis in serum samples of an independent cohort of 22 early stage PDAC, 27 BP, and 27 Ctr subjects. Unconditional binary logistic regression analysis was used to construct the optimal model for PDAC diagnosis. RESULTS: Upregulated levels of fatty acids and lipids and downregulated amino acids were observed in tissue and serum samples of PDAC patients. Proline, creatine, and palmitic acid were identified as a panel of potential biomarkers to distinguish PDAC from BP and Ctr (odds ratio = 2.17, [95% confidence interval 1.34-3.53]). The three markers showed area under the receiver-operating characteristic curves (AUCs) of 0.854 and 0.865, respectively, for the comparison of PDAC versus Ctr and PDAC versus BP. The AUCs were 0.830 and 0.852 in the validation set and were improved to 0.949 and 0.909 when serum carbohydrate antigen 19-9 (CA19-9) was added to the model. CONCLUSION: The novel metabolite biomarker panel identified in this study exhibited promising performance in distinguishing PDAC from BP or Ctr, especially in combination with CA19-9.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores Tumorais , Estudos de Casos e Controles , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Metabolômica , Neoplasias Pancreáticas
7.
Front Pharmacol ; 13: 1064498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467079

RESUMO

Background: Abelmoschus manihot (L.) Medik ("Huangkui" in Chinese, HK) has been widely used for the treatment of kidney diseases. Nephrotoxicity is the side effect of cisplatin (CDDP), which greatly limits its clinical application. Therefore, CDDP could be used to establish the chronic kidney disease (CKD) model. However, the protective effects of HK on CDDP-induced CKD have not been investigated. Purpose: To explore the protective effect and underlying mechanisms of HK on multiple low-dose CDDP-induced CKD in rats by the integrated analysis of serum, kidney, and urine metabolomics and network pharmacology. Methods: The CKD model was induced by multiple low-dose CDDP. Body weight, organ index, serum biochemical, and kidney histology were examined to evaluate the effect of HK. Serum, kidney, and urine were collected and profiled by HILIC/RPLC-Q-TOF/MS-based metabolomics. Potential biomarkers (PBs) were screened according to the criteria of VIP >1, p < 0.01, and FC > 2, and then identified or assigned. The pathway analysis and PBs enrichment were conducted by MetaboAnalyst and ChemRICH. Furthermore, network pharmacology was adopted to dig out the active components and targets. Finally, the results from metabolomics and network pharmacology were integrated to confirm each other. Results: HK could recover the CDDP-induced abnormal pharmacological and metabolic profile changes. A total of 187 PBs were screened and identified from the serum, kidney, and urine metabolomics. Pathway analysis showed that multiple metabolic pathways, mainly related to amino acid and lipid metabolisms, were involved in the nephroprotective effect of HK, and especially, HK could significantly alleviate the disorder of tryptophan metabolism pathway in serum, kidney, and urine. Meanwhile, network pharmacology analysis revealed that 5 components in HK and 4 key genes could be responsible for the nephroprotection of HK, which also indicated that the metabolism of tryptophan played an important role in HK against CKD. Conclusion: HK has a nephroprotection on CDDP-induced CKD, mainly by restoring the dysregulation of tryptophan metabolism. Integrated analysis of serum, kidney, and urine metabolomics and network pharmacology was a powerful method for exploring pharmacological mechanisms and screening active components and targets of traditional Chinese medicine.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35815273

RESUMO

Aims: This study aims to investigate the potential biomarkers of inflammatory bowel disease (IBD) and IBD with damp-heat syndrome (IBD-DH) by metabolomics. Methods: Plasma and urine samples were collected from 15 healthy controls and 30 IBD patients, including 15 IBD-DH and 15 IBD with spleen deficiency syndrome (IBD-SD), which was coded as SF8G and SF70 according to the International Classification of Diseases Eleventh Revision (ICD-11) issued by World Health Organization. Pseudotargeted metabolomics method was used based on ultra-high-performance liquid chromatography-high-resolution mass spectrometry and triple-quadrupole mass spectrometry. Results: Under the condition of false discovery rate (FDR) < 0.05, variable importance projection (VIP) > 1.0, and fold change (FC) > 1.5 or < 2/3, we found 57 plasma differential metabolites and 20 urinary differential metabolites in IBD. Then, with area under the curve (AUC) ≥ 0.85 and FC ≥ 2 or ≤ 0.3, 11 potential biomarkers were identified, such as acylcarnitine (ACar 20:4, ACar 18:1, and ACar 20:3), 3-indoleacetic acid, hippuric acid, and dehydroepiandrosterone sulfate, which is related to intestinal microbiota and immune response. However, less obvious differences were observed in IBD-DH when compared with IBD-SD. Under the condition of FDR < 0.2, VIP >1.0, and FC > 1.5 or < 2/3, we identified 16 plasma differential metabolites. In urine samples, IBD-DH and IBD-SD had the same metabolite pattern. With AUC ≥ 0.80, 7 differential plasma metabolites, mainly glycerophospholipids, were identified in IBD-DH. Kyoto Encyclopedia of Genes and Genomes analysis indicated that metabolic pathways, such as citrate cycle and amino acids metabolism, were mainly responsible for the distinction between IBD and healthy controls, whereas glycerophospholipid metabolism perturbation was not only a manifestation of IBD but also an important pathway to distinguish two subtypes defined by traditional medicine, IBD-DH and IBD-SD. Conclusion: In this study, we found that several metabolites of aromatic acids and lipid derivatives could act as potential biomarkers to discriminate IBD from healthy controls. Glycerophospholipids metabolites might be used to differentiate IBD-DH from IBD-SD.

9.
J Fungi (Basel) ; 8(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887486

RESUMO

Tomato cultivation is seriously affected by infection from Botrytis cinerea. The safe and effective control of tomato gray mold remains elusive. Plant-related microbial communities regulate not only plant metabolism but also plant immune systems. In this study, we observed that Selenium application in soil combined with foliar spraying of methyl jasmonate could reduce Botrytis cinerea infection in tomato fruits and leaves and improve tomato fruit quality. The infection rate of leaves decreased from 42.19% to 25.00%, and the vitamin C content increased by 22.14%. The bacterial community structure of the tomato was studied by using amplicon sequencing technology. The leaf bacterial alpha diversity of tomatoes treated with Se plus methyl jasmonate was significantly higher than that of the control. Then we isolated five strains antagonistic to Botrytis cinerea in vitro from tomato leaves in the treatment of Se plus methyl jasmonate. The antagonistic strains were identified as Bacillus subtilis and Bacillus velezensis. Spraying mixed antagonistic strain suspension significantly inhibited the diameter of Botrytis cinerea with an inhibition rate of 40.99%. This study revealed the key role of plant-beneficial bacteria recruited by Se combined with methyl jasmonate in improving tomato plant disease resistance. These findings may benefit our understanding of the new regulation of microorganisms on Botrytis cinerea.

11.
Cell Regen ; 11(1): 11, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366132

RESUMO

Adult skeletal muscle stem cells, also known satellite cells (SCs), are a highly heterogeneous population and reside between the basal lamina and the muscle fiber sarcolemma. Myofibers function as an immediate niche to support SC self-renewal and activation during muscle growth and regeneration. Herein, we demonstrate that microRNA 378 (miR-378) regulates glycolytic metabolism in skeletal muscle fibers, as evidenced by analysis of myofiber-specific miR-378 transgenic mice (TG). Subsequently, we evaluate SC function and muscle regeneration using miR-378 TG mice. We demonstrate that miR-378 TG mice significantly attenuate muscle regeneration because of the delayed activation and differentiation of SCs. Furthermore, we show that the miR-378-mediated metabolic switch enriches Pax7Hi SCs, accounting for impaired muscle regeneration in miR-378 TG mice. Mechanistically, our data suggest that miR-378 targets the Akt1/FoxO1 pathway, which contributes the enrichment of Pax7Hi SCs in miR-378 TG mice. Together, our findings indicate that miR-378 is a target that links fiber metabolism to muscle stem cell heterogeneity and provide a genetic model to approve the metabolic niche role of myofibers in regulating muscle stem cell behavior and function.

12.
Biomed Chromatogr ; 36(2): e5261, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34716608

RESUMO

A rapid and sensitive LC-MS/MS method was developed and validated for the simultaneous determination of nicotinamide and its metabolite N1 -methylnicotinamide in human serum. Serum samples were prepared by protein precipitation with acetonitrile. The chromatographic separation was performed on a Waters Spherisorb S5 CN microbore column (2.0 × 100 mm, 5 µm) with gradient elution within 7 min. Acetonitrile and 5 mm ammonium formate aqueous solution (containing 0.1% formic acid) were used as mobile phases. Nicotinamide, N1 -methylnicotinamide and N'-methylnicotinamide (internal standard) were detected with a triple-quadrupole tandem mass spectrometer in the positive ion mode. Multiple reaction monitoring was used to monitor precursor to product ion transitions of m/z 123.1 → 80.1 for nicotinamide, m/z 137.1 → 94.1 for N1 -methylnicotinamide and m/z 137.1 → 80.1 for the internal standard. The linear ranges of nicotinamide and N1 -methylnicotinamide were 5.000-160.0 and 2.500-80.00 ng/ml, respectively. The intra- and inter-day precisions (RSD) of both analytes were within 6.90%. The recoveries were >88%. The analytes were proven to be stable during all sample storage, preparation and analytic procedures. The method was successfully applied to determine the concentrations of nicotinamide and N1 -methylnicotinamide in human serum to investigate the association between their concentrations and obesity in 1160 Chinese subjects.


Assuntos
Cromatografia Líquida/métodos , Niacinamida/análogos & derivados , Niacinamida/sangue , Obesidade/sangue , Espectrometria de Massas em Tandem/métodos , Adulto , Humanos , Limite de Detecção , Modelos Lineares , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
13.
Front Med (Lausanne) ; 8: 656086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748166

RESUMO

Background and Objective: Glucose fluctuation (GF) has been reported to induce renal injury and diabetic nephropathy (DN). However, the mechanism still remains ambiguous. Mitochondrial energy metabolism, especially aerobic glycolysis, has been a hotspot of DN research for decades. The activation of HIF-1α/miR210/ISCU/FeS axis has provided a new explanation for aerobic glycolysis. Our previous studies indicated quercetin as a potential therapeutic drug for DN. This study aims to evaluate levels of aerobic glycolysis and repressive effect of quercetin via HIF-1α/miR210/ISCU/FeS axis in a cell model of GF. Methods: The mouse glomerular mesangial cells (MCs) were exposed in high or oscillating glucose with or without quercetin treatment. Cell viability was measured by CCK8 assay. Aerobic glycolysis flux was evaluated by lactate acid, pH activity of PFK. Apoptosis level was confirmed by Annexin V-APC/7-AAD double staining and activity of caspase-3. TNF-α and IL-1ß were used to evaluate inflammation levels. Results: GF deteriorated inflammation damage and apoptosis injury in MCs, while quercetin could alleviate this GF-triggered cytotoxicity. GF intensified aerobic glycolysis in MCs and quercetin could inhibit this intensification in a dose-dependent manner. Quercetin prevented activities of two FeS-dependent metabolic enzymes, aconitase, and complex I, under GF injury in MCs. The mRNA expression and protein contents of HIF-1α were increased after GF exposure, and these could be alleviated by quercetin treatment. Knockdown of ISCU by siRNA and Up-regulating of miR-210 by mimic could weaken the effects of quercetin that maintained protein levels of ISCU1/2, improved cell viability, relieved inflammation injury, decreased apoptosis, and reduced aerobic glycolysis switch in MCs. Conclusion: Quercetin antagonizes GF-induced renal injury by suppressing aerobic glycolysis via HIF-1α/miR-210/ISCU/FeS pathway in MCs cell model. Our findings contribute to a new insight into understanding the mechanism of GF-induced renal injury and protective effects of quercetin.

14.
Pharmacol Res ; 152: 104623, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31899315

RESUMO

Gastric cancer remains the second most common tumor in China. Modified-Bu-zhong-yi-qi decoction (mBYD) as an adjuvant therapy for gastric cancer patients after chemotherapy could significantly prolong the survival time of patients. However, the potential anticancer mechanism for mBYD has not been well characterized. Here, we conducted a comprehensive study of mBYD on a gastric cancer xenograft model with MFC cells in 615 mice and patients. Our results showed that the survival times of the 5-FU + mBYD and mBYD groups were significantly longer than that of the control group. Moreover, the 5-FU + mBYD group had a longer survival time than the 5-FU group. Flow cytometry revealed that the value of CD4+/CD8+ in the mBYD group increased and that the proportions of CD8+PD-1+ T cells and PD-1+Treg cells were decreased when compared to the control group. Compared with the 5-FU group, CD8+PD-1+ T cells and Treg cells were both decreased when 5-FU was combined with mBYD. Further analysis showed that mBYD inhibited PD-L1 expression by the PI3K/AKT pathway in gastric cancer. An in vitro study also showed that mBYD directly promoted the proliferation, activation and cytotoxicity of T lymphocytes. Meanwhile, mBYD reduced the upregulation of CD8+PD-1+ T cells induced by chemotherapy in patients with gastric cancer. In conclusion, mBYD could modulate peripheral immunity and suppress the immune escape of tumors, which may be a promising therapy for gastric cancer.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Fluoruracila/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Adenocarcinoma/imunologia , Adulto , Idoso , Animais , Antineoplásicos/farmacologia , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Fluoruracila/farmacologia , Humanos , Imunização , Masculino , Camundongos , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/imunologia , Neoplasias Gástricas/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
15.
EMBO J ; 38(24): e102154, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31736098

RESUMO

The function and number of muscle stem cells (satellite cells, SCs) decline with muscle aging. Although SCs are heterogeneous and different subpopulations have been identified, it remains unknown whether a specific subpopulation of muscle SCs selectively decreases during aging. Here, we find that the number of SCs expressing high level of transcription factor Pax7 (Pax7Hi ) is dramatically reduced in aged mice. Myofiber-secreted granulocyte colony-stimulating factor (G-CSF) regulates age-dependent loss of Pax7Hi cells, as the Pax7Hi SCs are replenished by exercise-induced G-CSF in aged mice. Mechanistically, we show that transcription of G-CSF (Csf3) gene in myofibers is regulated by MyoD in a metabolism-dependent manner. Furthermore, myofiber-secreted G-CSF acts as a metabolic niche factor required for establishing and maintaining the Pax7Hi SC subpopulation in adult and physiological aged mice by promoting the asymmetric division of Pax7Hi and Pax7Mi SCs. Together, our findings uncover that muscles provide a metabolic niche regulating Pax7 SC heterogeneity in mice.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Animais , Linhagem Celular , Fator Estimulador de Colônias de Granulócitos/genética , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia
16.
J Ethnopharmacol ; 235: 56-64, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30731181

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jianpi Yangzheng Xiaozheng Decoction (JPYZXZ) is an empirical compound prescription based on the theory of traditional Chinese medicine. JPYZXZ, which is "Qi-invigorating, spleen-strengthening and stasis-removing," can improve the quality of life of gastric cancer patients and prolong their survival; however, the exact mechanism underlying the antitumor effects of this compound is still not clear. AIM OF THE STUDY: The aim of this study is to clearly define the effect of JPYZXZ and its components, Jianpi Yangzheng Decoction (JPYZ) and Xiao Zheng San Jie Decoction (XZSJ), on inhibiting the progression of gastric cancer. MATERIALS AND METHODS: The effect of JPYZXZ and its components on the motility of gastric cancer MGC-803 cells was measured by MTT, adhesion, transwell assays and wound-healing assays. JPYZXZ, JPYZ and XZSJ were administered to 615 mice with gastric cancer xenografts, and their effect on the inhibition of subcutaneous transplantation was analyzed. THP-1 monocyte cells were used to establish tumor-associated macrophage (TAM) models. The polarized state of the TAMs was detected by Flow Cytometry, ELISA and Immunohistochemistry. The mRNA and protein expression of tumor epithelial-mesenchymal transition (EMT) and TAM-related genes was determined by Real-time PCR and Western Blot, respectively. RESULTS: We determined that both JPYZXZ and its components inhibited the progress of gastric cancer in vitro, and JPYZXZ was clearly more effective than JPYZ or XZSJ. The in vivo results demonstrated that the JPYZXZ and XZSJ group exhibited a significant decrease in the tumor weight compared to the control group. Further analysis indicated that JPYZXZ was more active than JPYZ or XZSJ in inhibiting the gastric cancer EMT transformation both in vivo and in vitro. However, JPYZ was more effective compared with JPYZXZ for inducing the phenotypic change in macrophages from M2 to M1. CONCLUSIONS: Our results demonstrate that both JPYZXZ and its components prevent the progress of gastric cancer. JPYZXZ inhibits the gastric cancer EMT more effectively than JPYZ and XZSJ, but JPYZ primarily works to regulate the phenotypic change in macrophages from M2 to M1.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Medicina Tradicional Chinesa/métodos , Camundongos , Neoplasias Gástricas/patologia , Células THP-1/efeitos dos fármacos , Células THP-1/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1068-1069: 226-232, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107222

RESUMO

Limonin is a bitter triterpenoid dilactone in the genus Citrus with potential medicinal value. In this study, the metabolism of limonin in human was characterized by high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). A total of 7 metabolites were identified from human samples. Among them, 3 metabolites of M1, M2 and M4 were detected in urine and feces, and the others were found in intestinal bacteria sample. Notably, M1 and M3 were chemically synthesized, of which the structures were further confirmed by NMR spectra data. The metabolism of limonin involved three major pathways, namely, reduction, hydrolysis and methylation. The reduction and hydrolysis were commonly observed in ring D of limonin. The metabolites showed decomposition in ring A. This study provides data for the metabolism of limonin in humans, and will contribute to explain its biological activity.


Assuntos
Cromatografia Líquida/métodos , Limoninas/análise , Limoninas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Administração Oral , Adulto , Fezes/química , Feminino , Microbioma Gastrointestinal , Humanos , Limoninas/administração & dosagem , Limoninas/química , Masculino , Adulto Jovem
18.
Zhongguo Zhong Yao Za Zhi ; 42(4): 686-695, 2017 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-28959838

RESUMO

The samples of Huangqi injection (HI) were analyzed by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-TOF-MS), and both positive and negative ion modes were employed to obtain the LC-TOF-MS analysis information of chemical compounds in HI. Then the mass defect filtering (MDF) approach, which was developed based on the previously published articles, was utilized to rapidly screen the astragalosides from the obtained LC-TOF-MS data. Each screened astragaloside was confirmed by the presence of no less than 2 quasi-molecular ions. All the screened astragalosides were then tentatively assigned according to the parent ion and daughter ion information. Finally, a total of 62 astragalosides were screened and characterized from the HI samples, including 15 new detected ones. The identification results indicated that acetylation, hydrogenation, dehydrogenation, methoxylation and hydration might be the major conversion reactions involved in the formation of the astragalosides. The LC-TOF-MS-based MDF approach was proved to be a feasible and efficient tool to screen the chemical constituents in complex matrices such as herbal medicines.


Assuntos
Medicamentos de Ervas Chinesas/química , Saponinas/análise , Astragalus propinquus , Cromatografia Líquida , Plantas Medicinais/química , Espectrometria de Massas em Tandem
19.
Sci Rep ; 7(1): 3619, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620200

RESUMO

The side effects of cisplatin (CDDP), notably nephrotoxicity, greatly limited its use in clinical chemotherapy. HuangQi Injections (HI), a commonly used preparation of the well-known Chinese herbal medicine Astragali radix, appeared to be promising treatment for nephrotoxicity without compromising the anti-tumor activity of CDDP. In this study, the urinary metabolomics approach using liquid chromatography time of flight mass spectrometry (LC-TOF/MS) was developed to assess the toxicity-attenuation effects and corresponding mechanisms of HI on CDDP-exposed rats. As a result, successive administration of HI significantly recovered the decline of body weight and downregulated the abnormal increase of serum creatinine and urea. HI partly restored the CDDP-induced alteration of metabolic profiling back into normal condition. Totally 43 toxicity-attenuation potential biomarkers were screened and tentatively identified, which were involved in important metabolic pathways such as amino acid metabolism, TCA cycle, fatty acid metabolism, vitamin B6 metabolism and purine metabolism. The results clearly revealed that HI could alleviate CDDP-induced nephrotoxicity and improve the disturbed metabolic balance induced by repeated CDDP exposure. The present study provided reliable evidence for the protective effect of HI on CDDP-induced toxicity with the multi-target pharmacological characteristics.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Nefropatias/etiologia , Nefropatias/metabolismo , Metaboloma , Metabolômica , Animais , Biomarcadores/urina , Cromatografia Líquida , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Nefropatias/tratamento farmacológico , Nefropatias/urina , Masculino , Redes e Vias Metabólicas , Metabolômica/métodos , Ratos , Espectrometria de Massas em Tandem
20.
Nat Commun ; 8: 14016, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091529

RESUMO

Long non-coding RNAs (lncRNAs) are important regulators of diverse biological processes. Here we report on functional identification and characterization of a novel long intergenic non-coding RNA with MyoD-regulated and skeletal muscle-restricted expression that promotes the activation of the myogenic program, and is therefore termed Linc-RAM (Linc-RNA Activator of Myogenesis). Linc-RAM is transcribed from an intergenic region of myogenic cells and its expression is upregulated during myogenesis. Notably, in vivo functional studies show that Linc-RAM knockout mice display impaired muscle regeneration due to the differentiation defect of satellite cells. Mechanistically, Linc-RAM regulates expression of myogenic genes by directly binding MyoD, which in turn promotes the assembly of the MyoD-Baf60c-Brg1 complex on the regulatory elements of target genes. Collectively, our findings reveal the functional role and molecular mechanism of a lineage-specific Linc-RAM as a regulatory lncRNA required for tissues-specific chromatin remodelling and gene expression.


Assuntos
Desenvolvimento Muscular , Proteína MyoD/metabolismo , Mioblastos/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Mioblastos/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...