Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1390473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835897

RESUMO

Objective: Guanyu Zhixie Granule (GYZXG) is a traditional Chinese medicine compound with definite efficacy in intervening in gastric ulcers (GUs). However, the effect mechanisms on GU are still unclear. This study aimed to explore its mechanism against GU based on amalgamated strategies. Methods: The comprehensive chemical characterization of the active compounds of GYZXG was conducted using UHPLC-Q/TOF-MS. Based on these results, key targets and action mechanisms were predicted through network pharmacology. GU was then induced in rats using anhydrous ethanol (1 mL/200 g). The intervention effects of GYZXG on GU were evaluated by measuring the inhibition rate of GU, conducting HE staining, and assessing the levels of IL-6, TNF-α, IL-10, IL-4, Pepsin (PP), and epidermal growth factor (EGF). Real-time quantitative PCR (RT-qPCR) was used to verify the mRNA levels of key targets and pathways. Metabolomics, combined with 16S rRNA sequencing, was used to investigate and confirm the action mechanism of GYZXG on GU. The correlation analysis between differential gut microbiota and differential metabolites was conducted using the spearman method. Results: For the first time, the results showed that nine active ingredients and sixteen targets were confirmed to intervene in GU when using GYZXG. Compared with the model group, GYZXG was found to increase the ulcer inhibition rate in the GYZXG-M group (p < 0.05), reduce the levels of IL-6, TNF-α, PP in gastric tissue, and increase the levels of IL-10, IL-4, and EGF. GYZXG could intervene in GU by regulating serum metabolites such as Glycocholic acid, Epinephrine, Ascorbic acid, and Linoleic acid, and by influencing bile secretion, the HIF-1 signaling pathway, and adipocyte catabolism. Additionally, GYZXG could intervene in GU by altering the gut microbiota diversity and modulating the relative abundance of Bacteroidetes, Bacteroides, Verrucomicrobia, Akkermansia, and Ruminococcus. The differential gut microbiota was strongly associated with serum differential metabolites. KEGG enrichment analysis indicated a significant role of the HIF-1 signaling pathway in GYZXG's intervention on GU. The changes in metabolites within metabolic pathways and the alterations in RELA, HIF1A, and EGF mRNA levels in RT-qPCR experiments provide further confirmation of this result. Conclusion: GYZXG can intervene in GU induced by anhydrous ethanol in rats by regulating gut microbiota and metabolic disorders, providing a theoretical basis for its use in GU intervention.

2.
J Am Chem Soc ; 146(23): 15825-15832, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819390

RESUMO

Catalytic π-arene activation is based on catalysts that allow for arene exchange. To date, cyclopentadiene (Cp)-derived catalysts are the most commonly used in π-arene activation despite their low arene exchange rates. Herein, we report the synthesis, analysis, and catalytic application of Ru(II) complexes supported by phenoxo ligands, which are isolobal alternatives to Cp. The phenoxo complexes exhibit arene exchange rates significantly faster than those of the corresponding Cp complexes. The rate can be further increased through the choice of appropriate counterions. The mechanism of the arene exchange process is elucidated by kinetic and computational analyses. We demonstrate the utility of the new catalysts through an SNAr reaction between fluorobenzene and alcohols, including secondary alcohols that could not be used previously in related reactions. Moreover, the catalytic thermal decarboxylation of phenylacetic acids is presented.

3.
J Med Chem ; 67(10): 8271-8295, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38717088

RESUMO

A series of heterocyclic ring-fused derivatives of bisnoralcohol (BA) were synthesized and evaluated for their inhibitory effects on RANKL-induced osteoclastogenesis. Most of these derivatives possessed potent antiosteoporosis activities in a dose-dependent manner. Among these compounds, 31 (SH442, IC50 = 0.052 µM) exhibited the highest potency, displaying 100% inhibition at 1.0 µM and 82.8% inhibition at an even lower concentration of 0.1 µM, which was much more potent than the lead compound BA (IC50 = 2.325 µM). Cytotoxicity tests suggested that the inhibitory effect of these compounds on RANKL-induced osteoclast differentiation did not result from their cytotoxicity. Mechanistic studies revealed that SH442 inhibited the expression of osteoclastogenesis-related marker genes and proteins, including TRAP, TRAF6, c-Fos, CTSK, and MMP9. Especially, SH442 could significantly attenuate bone loss of ovariectomy mouse in vivo. Therefore, these BA derivatives could be used as promising leads for the development of a new type of antiosteoporosis agent.


Assuntos
Osteoclastos , Osteoporose , Animais , Feminino , Camundongos , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Ovariectomia , Ligante RANK/metabolismo , Ligante RANK/antagonistas & inibidores , Células RAW 264.7 , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
4.
Nat Prod Res ; : 1-5, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813681

RESUMO

The phenomena of intramolecular self-assembly of bidesmosidic kalopanaxsaponins was identified for the first time in this paper. NMR (1H-NMR, NOESY), transmission electron microscopy (TEM), and molecular dynamics (MD) simulation techniques were used to compare the spatial structures of bidesmosidic kalopanaxsaponins and monodesmosidic kalopanaxsaponins. The results showed that the bidesmosidic kalopanaxsaponins formed a clustered and twisted structure in space, whereas the monodesmosidic kalopanaxsaponins were in an extended state. This discovery confirmed the presence of intramolecular self-assembly in bidesmosidic kalopanaxsaponins.

5.
Org Lett ; 26(15): 3004-3009, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38573817

RESUMO

A well-defined Ru(II)-PNP complex demonstrated high activity in the anti-Markovnikov hydroalkylation of nonpolarized terminal alkenes via hydrazones. Hydrazone served as a carbanion equivalent to combine with the electrophilic alkene substrate upon activation by the ruthenium catalyst, forming a new C-C bond in a concerted pathway with N2 as the only theoretical byproduct. Experimental and computational studies suggested the existence of a push-pull interaction that activated the alkene for hydrazone addition and then deduced the mechanism.

6.
Microorganisms ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543502

RESUMO

The low-temperature environment significantly inhibits the growth and metabolism of denitrifying bacteria, leading to an excessive concentration of ammonia nitrogen and total nitrogen in sewage treatment plants during the cold season. In this study, an efficient denitrifying strain of heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria named HS2 was isolated and screened from industrial sewage of a chemical factory in Inner Mongolia at 8 °C. The strain was confirmed to be Achromobacter spiritinus, a colorless rod-shaped bacterium. When cultured with sodium succinate as the carbon source, a carbon-to-nitrogen ratio of 20-30, a shaking rate of 150-180 r/min, and an initial pH of 6-10, the strain HS2 exhibited excellent nitrogen removal at 8 °C. Through the results of whole-genome sequencing, gene amplification, and gas product detection, the strain HS2 was determined to possess key enzyme genes in both nitrification and denitrification pathways, suggesting a HN-AD pathway of NH4+-N → NH2OH → NO2-N → NO → N2O → N2. At 8 °C, the strain HS2 could completely remove ammonia nitrogen from industrial sewage with an initial concentration of 127.23 mg/L. Microbial species diversity analysis of the final sewage confirmed Achromobacter sp. as the dominant genus, which indicated that the low-temperature denitrifying strain HS2 plays an important role in nitrogen removal in actual low-temperature sewage.

7.
Int J Endocrinol ; 2024: 8229604, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385060

RESUMO

Objective: This study aims to explore the relationships between serum indoxyl sulfate (IS) and Klotho protein levels with vascular calcification in patients with chronic kidney disease (CKD) stages 3-5. Methods: From December 2021 to January 2023, a total of 108 CKD patients in stages 3-5 were enrolled in this cross-sectional investigation. Demographic information and routine clinical biochemistry test results were gathered. Serum levels of IS and Klotho were quantified through enzyme-linked immunosorbent assays. Furthermore, multislice spiral computed tomography was employed to evaluate vascular calcification. The association between serum IS or Klotho levels and abdominal aorta calcification was assessed using univariate analysis and logistic regression analyses. Results: With the progression of CKD stages, serum creatinine, phosphorus, intact parathyroid hormone (iPTH), serum IS, and abdominal aortic calcification exhibited incremental trends, while serum calcium and Klotho protein levels showed a diminishing trend, with statistically significant differences (P < 0.05). Significant differences were observed in age, blood phosphorus, calcium, total parathyroid hormone, serum IS, and Klotho protein levels between patients with and without aortic calcification (P < 0.05). Logistic regression analysis demonstrated that advanced age, high IS level, and low Klotho protein level were independent risk factors for abdominal aortic calcification in CKD patients (P < 0.05). Conclusion: This study indicates elevated serum IS levels and decreased Klotho protein levels in CKD patients. High IS level and low Klotho level were independent risk factors for abdominal aortic calcification.

8.
Biomed Chromatogr ; 38(5): e5840, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402901

RESUMO

The incidence of colibacillosis in poultry is on the rise, significantly affecting the chicken industry. Ceftiofur sodium (CS) is frequently employed to treat this disease, resulting in lipopolysaccharide (LPS) buildup. Processing plays a vital role in traditional Chinese veterinary medicine. The potential intervention in liver injury by polysaccharides from the differently processed products of Angelica sinensis (PDPPAS) induced by combined CS and LPS remains unclear. This study aims to investigate the protective effect of PDPPAS on chicken liver injury caused by CS combined with LPS buildup and further identify the polysaccharides with the highest hepatoprotective activity in chickens. Furthermore, the study elucidates polysaccharides' intervention mechanism using tandem mass tag (TMT) proteomics and multiple reaction monitoring (MRM) methods. A total of 190 1-day-old layer chickens were randomly assigned into 12 groups, of which 14 chickens were in the control group and 16 in other groups, for a 10-day trial. The screening results showed that charred A. sinensis polysaccharide (CASP) had the most effective and the best hepatoprotective effect at 48 h. TMT proteomics and MRM validation results demonstrated that the intervention mechanism of the CASP high-dose (CASPH) intervention group was closely related to the protein expressions of FCER2, TBXAS1, CD34, AGXT, GCAT, COX7A2L, and CYP2AC1. Conclusively, the intervention mechanism of CASPH had multitarget, multicenter regulatory features.


Assuntos
Angelica sinensis , Galinhas , Fígado , Polissacarídeos , Proteômica , Espectrometria de Massas em Tandem , Animais , Angelica sinensis/química , Proteômica/métodos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/análise , Espectrometria de Massas em Tandem/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteoma/análise , Proteoma/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
9.
Biosens Bioelectron ; 248: 115973, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150797

RESUMO

Hybridization chain reaction (HCR) based enzyme-free amplification techniques have recently been developed for the visualization of intracellular messenger RNA (mRNA). However, the slow kinetics and potential interference with the intricate biological environments hinder its application in the clinic and in vivo. Herein, we designed a nanofirecracker probe-based strategy using intramolecular hybridization chain reaction (IHCR) amplifier for rapid, efficient, sensitive, specific detection and imaging of survivin mRNA both in vitro and vivo. Two probes, HP1 and HP2, in IHCR were simultaneously incorporated into a DNA nanowire scaffolds to bring HP1 and HP2 to close proximity on the assembled nanowire scaffolds. Empowered by the DNA nanowire scaffolds and spatial confinement effect, the nanofirecracker probe-based IHCR sensing system exhibited improved biostability, accelerated reaction kinetics, and enhanced signal amplification. This new strategy has been successfully applied to imaging mRNA in both cultured cells and in mice. Importantly, this novel sensing method was capable of detecting survivin mRNA in clinical blood samples from subjects with colorectal cancer. Thus, this novel nanofirecracker probe-based IHCR strategy holds great potential in advancing both biomedical research and in molecular diagnostics.


Assuntos
Técnicas Biossensoriais , Humanos , Animais , Camundongos , RNA Mensageiro/genética , Survivina/genética , Técnicas Biossensoriais/métodos , Hibridização de Ácido Nucleico/métodos , DNA/genética , Proteínas Cromossômicas não Histona/genética
10.
Front Pharmacol ; 14: 1277283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954842

RESUMO

Lonicerae Japonicae Caulis is the aboveground stem part of the Lonicera Japonica Thunb, which belongs to the medicine food homology species in China. It has the effects of clearing away heat, toxic material, dredging wind and unblocking collaterals. Modern research shows that it contains various active metabolites and a wide range of pharmacological effects, which is of great research and clinical application value. It mainly contains organic acids, volatile oils, flavonoids, triterpenes, triterpene saponins and other active metabolites. Its pharmacological effects mainly include anti-inflammatory, antibacterial, antitumor, antioxidant, and repairing bone and soft tissue. Based on the literature reports in recent years, the active metabolites, pharmacological effects and mechanisms of Lonicerae Japonicae Caulis were sorted out and summarized. It lays a foundation for explaining the efficacy material basis and application value of Lonicerae Japonicae Caulis. It aims to provide a reference for the in-depth research, development and utilization of Lonicerae Japonicae Caulis.

11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(4): 571-580, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37654137

RESUMO

Objective To investigate the changes in plasma amyloid-ß (Aß) level and their relationship with white matter microstructure in the patients with amnesic mild cognitive impairment(aMCI) and vascular mild cognitive impairment (vMCI).Methods A total of 36 aMCI patients,20 vMCI patients,and 34 sex and age matched healthy controls (HC) in the outpatient and inpatient departments of the First Affiliated Hospital of Anhui Medical University were enrolled in this study.Neuropsychological scales,including the Mini-Mental State Examination,the Montreal Cognitive Assessment,and the Activity of Daily Living Scale,were employed to assess the participants.Plasma samples of all the participants were collected for the measurement of Aß42 and Aß40 levels.All the participants underwent magnetic resonance scanning to obtain diffusion tensor imaging (DTI) data.The DTI indexes of 48 white matter regions of each individual were measured (based on the ICBM-DTI-81 white-matter labels atlas developed by Johns Hopkins University),including fractional anisotropy (FA) and mean diffusivity (MD).The cognitive function,plasma Aß42,Aß40,and Aß42/40 levels,and DTI index were compared among the three groups.The correlations between the plasma Aß42/40 levels and DTI index of aMCI and vMCI patients were analyzed.Results The Mini-Mental State Examination and the Montreal Cognitive Assessment scores of aMCI and vMCI groups were lower than those of the HC group (all P<0.001).There was no significant difference in the Activity of Daily Living Scale score among the three groups (P=0.654).The plasma Aß42 level showed no significant difference among the three groups (P=0.227).The plasma Aß40 level in the vMCI group was higher than that in the HC group (P=0.014),while it showed no significant difference between aMCI and HC groups (P=1.000).The plasma Aß42/40 levels in aMCI and vMCI groups showed no significant differences from that in the HC group (P=1.000,P=0.105),while the plasma Aß42/40 level was lower in the vMCI group than in the aMCI group (P=0.016).The FA value of the left anterior limb of internal capsule in the vMCI group was lower than those in HC and aMCI groups (all P=0.001).The MD values of the left superior corona radiata,left external capsule,left cingulum (cingulate gyrus),and left superior fronto-occipital fasciculus in the vMCI group were higher than those in HC (P=0.024,P=0.001,P=0.003,P<0.001) and aMCI (P=0.015,P=0.004,P=0.019,P=0.001) groups,while the MD values of the right posterior limb of internal capsule (P=0.005,P=0.001) and left cingulum (hippocampus) (P=0.017,P=0.031) in the aMCI and vMCI groups were higher than those in the HC group.In the aMCI group,plasma Aß42/40 level was positively correlated with FA of left posterior limb of internal capsule (r=0.403,P=0.015) and negatively correlated with MD of the right fonix (r=-0.395,P=0.017).In the vMCI group,plasma Aß42/40 level was positively correlated with FA of the right superior cerebellar peduncle and the right anterior limb of internal capsule (r=0.575,P=0.008;r=0.639,P=0.002),while it was negatively correlated with MD of the right superior cerebellar peduncle and the right anterior limb of internal capsule (r=-0.558,P=0.011;r=-0.626,P=0.003).Conclusions Plasma Aß levels vary differently in the patients with aMCI and vMCI.The white matter regions of impaired microstructural integrity differ in the patients with different dementia types in the early stage.The plasma Aß levels in the patients with aMCI and vMCI are associated with the structural integrity of white matter,and there is regional specificity between them.


Assuntos
Disfunção Cognitiva , Substância Branca , Humanos , Imagem de Tensor de Difusão , Substância Branca/diagnóstico por imagem , Pacientes Ambulatoriais , Cognição , Peptídeos beta-Amiloides
12.
J Med Chem ; 66(17): 11965-11984, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37597216

RESUMO

A series of heterocyclic ring-fused derivatives of 20(S)-protopanaxadiol (PPD) were synthesized and evaluated for their inhibitory effects on RANKL-induced osteoclastogenesis. Among these compounds, 33 (SH491, IC50 = 11.8 nM) showed the highest potency with 100% inhibition at 0.1 µM and 44.4% inhibition at an even lower concentration of 0.01 µM, which was much more potent than the lead compound PPD (IC50 = 10.3 µM). Cytotoxicity tests indicated that the inhibitory effect of these compounds on RANKL-induced osteoclast differentiation was not due to their cytotoxicity. Interestingly, SH491 also exhibited a notable impact on the osteoblastogenesis of MC3T3-E1 preosteoblasts. Mechanistic studies revealed that SH491 inhibits the expression of osteoclastogenesis-related marker genes and proteins, including TRAP, CTSK, MMP-9, and ATPase v0d2. In vivo, SH491 could dramatically decrease the ovariectomy-induced osteoclast activity and relieve osteoporosis obviously. Thus, these PPD derivatives could be served as promising leads for the development of novel antiosteoporosis agents.


Assuntos
Adenosina Trifosfatases , Osteoporose , Feminino , Humanos , Osteoclastos , Osteogênese , Osteoporose/tratamento farmacológico
14.
J Affect Disord ; 328: 273-286, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746244

RESUMO

Accumulating evidence revealed the role of tryptophan (TRP) metabolism, especially its kynurenine pathway (KP), in the communication along the gut-brain axis. However, the underlying characterization of such interaction was not precise. In the present study, the rat depression model was induced by chronic restraint stress (CRS). After depression behavior tests, seven segments (cortex, hippocampus, striatum, hypothalamus, serum, cecum, and colon) along the gut-brain axis were collected to characterize their KP metabolism. mRNA expression of IL-1ß, IFN-γ, IL-10 and indoleamine 2,3-dioxygenase 1 (IDO1) enzyme revealed a general inflammatory response and region-specific activated IDO1 along the gut-brain axis. Determination of KP metabolites and enzymes displayed a general KP activation with region-specificity, especially in the hippocampus and colon, where the changes were more pronounced. KYN and 3-HK were increased dramatically along the gut-brain axis; hippocampal KA revealed a significant decrease while colonic KA showed a notable increase, evidenced by the same alternation trends of the corresponding enzymes. The expression of quinolinic acid phosphoribosyltransferase (QPRT), the crucial enzyme to produce NAD+ from QA, was significantly upregulated in the gut but not changed in the brain. Pearson's correlation analysis suggested that kynurenine (KYN), 3-hydroxycaninuric acid (3-HK), serotonin (5-HT), TRP and kynurenic acid (KA) significantly correlated with depressive behaviors in rats. Furthermore, western blot analysis on nod-like receptor protein 3/2 (NLRP3/NLRP2) inflammasome signaling displayed that NLRP3 and cleaved IL-1ß/caspase-1 were significantly activated in the hippocampus and colon of CRS rats. However, NLRP2 was only activated in the hippocampus. These results revealed CRS induced inflammatory responses along the brain-gut axis of rats might be controlled through the NLRP3/NLRP2 inflammasome signaling pathway, which may be the underlying regulator for CRS-induced TRP-KYN metabolic changes. This study provides a new experimental background for developing stress-related health products.


Assuntos
Cinurenina , Triptofano , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Encéfalo/metabolismo
15.
Arch Insect Biochem Physiol ; 113(2): e22005, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36802092

RESUMO

N6-methyladenosine (m6A) is a ubiquitous reversible epigenetic RNA modification that plays an important role in regulating many biological processes, especially embryonic development. However, regulation of m6A methylation during silkworm embryonic development and diapause remains to be investigated. In this study, we analyzed the phylogeny of subunits of methyltransferases BmMettl3 and BmMettl14, and detected the expression patterns of BmMettl3 and BmMettl14 in different tissues and at different developmental stages in silkworm. To investigate the function of m6A on the development of silkworm embryo, we analyzed the m6A/A ratio in diapause and diapause termination eggs. The results showed that BmMettl3 and BmMettl14 were highly expressed in gonads and eggs. Moreover, the expression of BmMettl3 and BmMettl14 and the m6A/A ratio were significantly increased in diapause termination eggs compared with diapause eggs in the early stage of silkworm embryonic development. Furthermore, in BmN cell cycle experiments, the percentage of cells in the S phase increased when lacking BmMettl3 or BmMettl14. This work contributes to understanding the role of m6A methylation during insect embryogenesis and gametogenesis. It also provides a research orientation to further analyze the role of m6A methylation in diapause initiation and termination during insect embryonic development.


Assuntos
Bombyx , Metiltransferases , Animais , Metiltransferases/genética , Metiltransferases/metabolismo , Bombyx/metabolismo , RNA/metabolismo , Epigênese Genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Óvulo/metabolismo
16.
Anal Chem ; 94(42): 14716-14724, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36223141

RESUMO

DNA damage induced by endogenous/exogenous factors may cause various diseases, and the genomic DNA damage has become an important biomarker for clinical diagnosis and risk assessment, but it remains a great challenge to accurately quantify both clustered and isolated damage because of their random locations, large diversity, and low abundance. Herein, we demonstrate the development of bioluminescent sensors for label-free, template-free, separation-free, and sequence-independent detection of both clustered and isolated damage in genomic DNA based on the base-excision repair (BER) pathway and terminal transferase (TdT)-initiated template-free isothermal cyclic amplification. The damaged bases are cleaved by DNA glycosylase to generate a new 3'-OH terminus, and subsequently, TdT catalyzes the repeated incorporation of dTTPs into the 3'-OH terminus to produce poly-T structures which can hybridize with the signal probe to form a poly-T sequence/signal probe duplex. Under the lambda exonuclease hydrolysis, a large number of adenosine monophosphate (AMP) molecules are produced to generate a high bioluminescence signal through the cyclic interconversion of AMP-adenosine triphosphate (ATP)-AMP in the presence of luciferin and firefly luciferase. Moreover, the introduction of APE1-induced cyclic cleavage signal amplification can greatly improve the detection sensitivity. The proposed strategy can detect both clustered and isolated damage in genomic DNA with extremely high sensitivity and excellent specificity, and it can even distinguish 0.001% DNA damage in the mixture. Importantly, it can detect the cellular DNA damage with a detection limit of 0.011 ng and further extend to measure various DNA damage with the integration of appropriate DNA repair enzymes.


Assuntos
DNA Glicosilases , Luciferases de Vaga-Lume , DNA Nucleotidilexotransferase/metabolismo , DNA/genética , DNA/metabolismo , DNA Glicosilases/metabolismo , Enzimas Reparadoras do DNA , Trifosfato de Adenosina , Monofosfato de Adenosina , Genômica , Exonucleases , Dano ao DNA
17.
Front Physiol ; 13: 976190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262259

RESUMO

Objective: The pathogenesis of elevated uric acid (UA) levels in patients with cardiac syndrome X (CSX) is unclear, and the results presented in recent papers on UA levels in patients with CSX are controversial. Therefore, we conducted a meta- analysis to assess the relationship between UA levels and CSX. Methods: Three databases, including the Web of Science, EMBASE and PubMed, were systematically searched until January 2022. Fixed-effect and random-effects models were used to analyze the relationship between UA levels and CSX. Subgroup analysis and sensitivity analysis were also performed. Results: Six studies involving 406 CSX patients and 267 non-CSX were included. Our results showed a significant relationship between UA levels and CSX, with a pooled SMD of 0.68 (95% CI 0.37 to 1.00; p < 0.0001). We also found a close relationship between UA levels and CSX for patients ≥ 55 years old (SMD:0.70, 95% CI: 0.41 to 0.99, p < 0.00001), for patients < 55 years old (SMD: 0.68, 95% CI: 0.25 to 1.12, p =0 .002), for women ≥ 60% (SMD: 0.77, 95% CI: 0.33 to 1.14, p =0 .0004), for women < 60% (SMD: 0.61, 95% CI:0.23 to 0.98, p =0 .001), for BMI ≥ 28 Kg/m2 (SMD :0.61, 95% CI: 0.23 to 0.98, p =0 .001), for BMI < 28 Kg/m2 (SMD:0.75, 95% CI: 0.31 to 1.19, p =0 .0009), for publication years ≥ 2012 (SMD :0.69, 95% CI: 0.23 to 1.15, p = 0.003), for publication years < 2012 (SMD:0.73, 95% CI:0.41 to 1.05, p < 0.00001), and for Turkey (SMD:0.75, 95% CI:0.38 to 1.11, p <.0001). Sensitivity analysis showed that the pooled results remained consistent after removing any one study or converting the random-effects model to fixed-effects model. Conclusion: Our results indicated a strong association between high UA levels and CSX. However, more well-designed studies are needed to investigate whether early treatment of hyperuricemia can reduce the incidence of CSX.

18.
Anal Chem ; 94(40): 13978-13986, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179339

RESUMO

Sensitive monitoring of intracellular uracil-DNA glycosylase (UDG) in living cells is essential to understanding the DNA repair pathways and discovery of anticancer drugs. Herein, we demonstrate the construction of an entropy-driven dumbbell-type DNAzyme assembly circuit for lighting up UDG in living cells via the integration of entropy-driven DNA catalysis (EDC) with the DNAzyme biocatalyst. Target UDG excises the damaged uracil base, causing the breakage of detection probe and the release of trigger. The released trigger can initiate the downstream EDC reaction to form two catalytically active DNAzyme units. The resultant dual Mg2+-DNAzyme units serve as the signal transducers to cyclically cleave the fluorophore/quenched-modified reporters, generating an enhanced fluorescence signal. In contrast to the single-layered EDC method with a linear amplification, the proposed doublet EDC-DNAzyme strategy exhibits high signal gain and achieves a detection limit of 8.71 × 10-6 U/mL. Notably, this assay can be performed in one-step manner at room temperature without the requirement of strict temperature control and complicated reaction procedures, and it can further screen the UDG inhibitors, measure kinetic parameters, and discriminate cancer cells from normal cells. Moreover, this strategy can monitor intracellular UDG activity with improved signal gain, and it may be exploited for sensing and imaging of other types of DNA modifying enzymes with the integration of the corresponding detection substrate, providing a facile and robust approach for biological research studies and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Técnicas Biossensoriais/métodos , DNA , Entropia , Uracila , Uracila-DNA Glicosidase/metabolismo
19.
Biosens Bioelectron ; 213: 114447, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35679648

RESUMO

Uracil-DNA glycosylase (UDG) is essential to the maintenance of genomic integrity due to its critical role in base excision repair pathway. However, existing UDG assays suffer from laborious procedures, poor specificity, and limited sensitivity. In this research, we construct a catalytic single-molecule Föster resonance energy transfer (FRET) biosensor for in vitro and in vivo biosensing of UDG activity. Target UDG can remove uracil base from the detection probe and cause the cleavage of detection probe by apurinic/apyrimidinic endonuclease (APE1), which exposes its toehold domain and initiates catalytic assembly of two fluorescently labeled hairpin probes via toehold-meditated strand displacement reaction (SDA) to generate abundant DNA duplexes with amplified FRET signal. In this assay, target UDG signal is amplified via enzyme-free catalytic reaction and the whole reaction may be completed in one step, which greatly simplifies the assay procedure, reduces the assay time, and facilitates the cellular imaging. This biosensor enables specific and sensitive measurement of UDG down to 0.00029 U/mL, and it is suitable for analyzing kinetic parameters, screening inhibitors, and even imaging endogenous UDG in live cells. Importantly, this biosensor can visually quantify various DNA repair enzymes by rationally altering DNA substrates.


Assuntos
Técnicas Biossensoriais , Uracila-DNA Glicosidase , DNA/química , Reparo do DNA , Transferência Ressonante de Energia de Fluorescência , Uracila/química , Uracila-DNA Glicosidase/metabolismo
20.
J Ethnopharmacol ; 294: 115349, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35533914

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Polygalae, a commonly used traditional Chinese herb, has conventionally functioned in tranquilization and sedation, where anti-inflammation may be the underlying mechanism. AIM OF THE STUDY: Chronic restraint stress (CRS), a risk factor for the etiology of intestinal disorders, was used in the present study to examine whether Radix Polygalae extract (RPE) could modulate colonic dysfunction in CRS rats. MATERIALS AND METHODS: Wistar rats were exposed to 28-day CRS (6 h daily), and RPE (135 mg/kg and 270 mg/kg) was intragastrically administered 1 h before CRS. Subsequently, the gut microbiota was determined using metagenomic sequencing. Colonic proinflammatory interleukin-1ß, -6, and -18 were assayed using qRT-PCR and ELISA. Tight junction proteins were quantified by qRT-PCR and western blotting (WB), and tryptophan metabolic enzymes and metabolites were determined using qRT-PCR and UFLC-QTRAP-5500/MS. Moreover, protein expression of colonic tight junction proteins, NF-κB-NLRP3 signaling involved in the underlying mechanism of RPE were detected by WB. RESULTS: RPE significantly decreased proinflammatory cytokines and reshaped the gut microbiota, especially the probiotics, including Lactobacillus and Bacteroides. Moreover, RPE could modulate the metabolite contents and enzyme expression associated with colonic tryptophan-kynurenine (TRP-KYN) metabolism and could increase tight junction protein expression in CRS rats. Furthermore, RPE inhibited the activation of NF-κB-NLRP3 signaling in the colon of CRS rats. CONCLUSION: RPE could modulate colonic inflammation, colonic microbiota, tight junction, TRP-KYN metabolism and NF-κB-NLRP3 signaling to reach a colonic balance of CRS rats. The present study helped us to better understand and appreciate the various beneficial effects of RPE.


Assuntos
NF-kappa B , Triptofano , Animais , Colo/metabolismo , Medicamentos de Ervas Chinesas , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Wistar , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...