Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1624: 433-445, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26282348

RESUMO

Neuroinflammation induced by microglial activation plays a critical role in many neurodegenerative diseases, including Parkinson's disease (PD). Recent studies have indicated that cysteinyl leukotriene receptor 2 (CysLT2R) is involved in inflammation and brain injury after cerebral ischemia. However, the role of CysLT2R in microglial responses associated with PD remains unclear. In the present study, we determined the regulatory roles of CysLT2R in microglial inflammation and subsequent neurotoxicity in an in vitro brain inflammation model induced by the microglial activator lipopolysaccharide (LPS). We found that LPS induced phagocytosis of a murine microglial cell line (BV-2 cells) and increased production of the proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß). The expression of CysLT2R protein was up-regulated and the nuclear translocation of CysLT2R was induced in LPS-activated BV-2 cells. CysLT2R selective antagonist HAMI 3379 significantly inhibited LPS-induced phagocytosis and overproduction of the cytokines in BV-2 cells. Similarly, the CysLT2R silencing by specific short hairpin RNA (shRNA) had the same effects as those of HAMI 3379, suggesting that the effect might be CysLT2R-dependent. Furthermore, the conditioned medium (CM) derived from LPS-treated BV-2 cells induced the cell death of a rat adrenal pheochromocytoma cell line (PC12). HAMI 3379 and CysLT2R shRNA attenuated neuronal death by suppressing the production of neurotoxic cytokines released from LPS-activated microglia. Collectively, these results suggest that CysLT2R mediates LPS-induced microglial inflammation and consequent neurotoxicity. CysLT2R may be a promising molecular target that modulates microglia-related neuroinflammation in neurodegenerative disorders, such as PD.


Assuntos
Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Receptores de Leucotrienos/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada/efeitos dos fármacos , Ácidos Cicloexanocarboxílicos/farmacologia , Relação Dose-Resposta a Droga , Camundongos , Fagocitose/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , RNA Interferente Pequeno/farmacologia , Ratos , Receptores de Leucotrienos/genética , Fatores de Tempo
2.
Brain Res ; 1572: 59-71, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24858057

RESUMO

The 5-lipoxygenase (5-LOX) products cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory mediators. CysLTs mediate their biological actions through activating CysLT receptors (CysLT(1)R and CysLT(2)R). We have recently reported that 5-LOX and CysLT(1)R mediated PC12 cell injury induced by high concentrations of rotenone (0.3-10 µM), which was reduced by the selective 5-LOX inhibitor zileuton and CysLT(1)R antagonist montelukast. The purpose of this study was to examine the regulatory roles of the 5-LOX/CysLT(1)R pathway in microglial activation induced by low concentration rotenone. After mouse microglial BV2 cells were stimulated with rotenone (0.3-3 nM), phagocytosis and release of pro-inflammatory cytokine were assayed as indicators of microglial activation. We found that rotenone (1 and 3 nM) increased BV2 microglial phagocytosis and the release of the pro-inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Zileuton and montelukast prevented rotenone (3 nM)-induced phagocytosis and cytokine release. Furthermore, rotenone significantly up-regulated 5-LOX expression, induced 5-LOX translocation to the nuclear envelope, and increased the production of CysLTs. These responses were inhibited by zileuton. Rotenone also increased CysLT(1)R expression and induced nuclear translocation of CysLT(1)R. In primary rat microglia, rotenone (10 nM) increased release of IL-1ß and TNF-α, whereas zileuton (0.1 µΜ) and montelukast (0.01 µΜ) significantly inhibited this response. These results indicated that 5-LOX and CysLT(1)R might be key regulators of microglial activation induced by low concentration of rotenone. Interference of 5-LOX/CysLT(1)R pathway may be an effective therapeutic strategy for microglial inflammation.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Receptores de Leucotrienos/metabolismo , Rotenona/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Camundongos , Microglia/enzimologia , Fagocitose/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...