Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(32): 13001-13010, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39148804

RESUMO

The multiple relaxation processes of excited states are a bridge connecting molecular structures and properties, providing enormous application potential for organic luminogens. However, a systematic understanding and manipulation of the relationship between the molecular structure, excited state relaxation processes, and properties of organic luminogens is still lacking. Herein, we report a strategy for manipulating excited state electronic configurations through the regulation of the sulfur oxidation state to construct eminent organic type I PSs. Combined with the experimental results and theoretical calculations, we have successfully revealed the decisive role of high sulfur oxidation states in promoting ROS production capacity. Impressively, a higher sulfur oxidation state can reduce the singlet-triplet energy gap (ΔE ST), increase the matching degree of transition configurations, promote the changes of the excited state electronic configurations, and boost the effective ISC proportion by enhancing intramolecular interactions. Therefore, DBTS2O with the highest sulfur oxidation state exhibits the strongest type I ROS generation ability. Additionally, guided by our strategy, a water-soluble PS (2OA) is designed and synthesized, showing selective imaging capacity and photokilling ability against Gram-positive bacteria. This study broadens the horizons for both molecular design and mechanism study of high-performance organic type I PSs.

2.
Nat Commun ; 15(1): 5832, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992020

RESUMO

While second near-infrared (NIR-II) fluorescence imaging is a promising tool for real-time surveillance of surgical operations, the previously reported organic NIR-II luminescent materials for in vivo imaging are predominantly activated by expensive lasers or X-ray with high power and poor illumination homogeneity, which significantly limits their clinical applications. Here we report a white-light activatable NIR-II organic imaging agent by taking advantages of the strong intramolecular/intermolecular D-A interactions of conjugated Y6CT molecules in nanoparticles (Y6CT-NPs), with the brightness of as high as 13315.1, which is over two times that of the brightest laser-activated NIR-II organic contrast agents reported thus far. Upon white-light activation, Y6CT-NPs can achieve not only in vivo imaging of hepatic ischemia reperfusion, but also real-time monitoring of kidney transplantation surgery. During the surgery, identification of the renal vasculature, post-reconstruction assessment of renal allograft vascular integrity, and blood supply analysis of the ureter can be vividly depicted by using Y6CT-NPs with high signal-to-noise ratios upon clinical laparoscopic LED white-light activation. Our work provides efficient molecular design guidelines towards white-light activatable imaging agent and highlights an opportunity for precision imaging theranostics.


Assuntos
Imagem Óptica , Cirurgia Assistida por Computador , Animais , Cirurgia Assistida por Computador/métodos , Camundongos , Imagem Óptica/métodos , Luz , Nanoestruturas/química , Transplante de Rim/métodos , Humanos , Fígado/diagnóstico por imagem , Fígado/cirurgia , Nanopartículas/química , Raios Infravermelhos , Luminescência , Rim/diagnóstico por imagem , Rim/cirurgia , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Meios de Contraste/química
3.
Small ; : e2402993, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750614

RESUMO

2D covalent organic framework (COF) materials with extended conjugated structure and periodic columnar π-arrays exhibit promising applications in organic optoelectronics. However, there is a scarcity of reports on optoelectronic COFs, mainly due to the lack of suitable π-skeletons. Here, two multi-functional optoelectronic 2D COFs DPP-TPP-COF and DPP-TBB-COF are constructed with diketopyrrolopyrrole as electron acceptor (A), and 1,3,6,8-tetraphenylpyrene and 1,3,5-triphenylbenzene as electron donor (D) through imine bonds. Both 2D COFs showed good crystallinities and AA stacking with a rhombic framework for DPP-TPP-COF and hexagonal one for DPP-TBB-COF, respectively. The electron D-A and ordered intermolecular packing structures endow the COFs with broad UV-vis absorptions and narrow bandgaps along with suitable HOMO/LUMO energy levels, resulting in multi-functional optoelectronic properties, including photothermal conversion, supercapacitor property, and ambipolar semiconducting behavior. Among them, DPP-TPP-COF exhibits a high photothermal conversion efficiency of 47% under 660 nm laser irradiation, while DPP-TBB-COF exhibits superior specific capacitance of 384 F g-1. Moreover, P-type doping and N-type doping are achieved by iodine and tetrakis(dimethylamino)ethylene on a single host COF, resulting in ambipolar semiconducting behavior. These results provide a paradigm for the application of multi-functional optoelectronic COF materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA