Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1400810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175760

RESUMO

Introduction: Sleep disorders are prevalent and significant among individuals receiving methadone maintenance treatment (MMT), adversely affecting their quality of life and treatment adherence. While cerebral blood flow (CBF) plays a crucial role in the development of various diseases, its relationship with sleep disorders remains uncertain. This observational study focuses on possible correlations between CBF and poor subjective sleep quality in MMT patients. Methods: A total of 75 participants with a history of MMT were recruited and assessed using pseudo-continuous arterial spin labeling magnetic resonance imaging to determine CBF. A LAASO regression model was employed to identify the region of interest (ROI) most associated with sleep disturbance. The association between the CBF of the ROI and the Pittsburgh Sleep Quality Index (PSQI) was examined using regression analyses. Age, gender, BMI, history of hypertension, diabetes, hyperlipidemia, and methadone withdrawal were included as covariates. Results: Among MMT patients with poor subjective sleep quality, significantly higher CBF was observed in the right paracentral lobule (56.1057 ± 11.1624 ml/100 g/min, p = 0.044), right cerebelum_3 (56.6723 ± 15.3139 ml/100 g/min, p = 0.026), right caudate nucleus (48.9168 ± 6.9910 ml/100 g/min, p = 0.009), and left caudate nucleus (47.6207 ± 6.1374 ml/100 g/min, p = 0.006). Furthermore, a positive correlation was found between CBF in the right paracentral lobule and the total PSQI score (ß = 0.1135, p = 0.0323), with the association remaining significant even after adjustment for covariates (ß = 0.1276, p = 0.0405). Conclusion: MMT patients with poor subjective sleep quality exhibited significantly altered CBF in multiple brain regions. The association between increased CBF in the right paracentral lobule and subjective sleep quality in MMT patients could be crucial in understanding sleep disorders in individuals undergoing MMT. Clinical trial registration: https://www.chictr.org.cn/, identifier: ChiCTR2100051931.

2.
Front Psychiatry ; 15: 1402533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827441

RESUMO

Introduction: Methamphetamine is currently one of the most commonly used addictive substances with strong addiction and a high relapse rate. This systematic review aims to examine the effectiveness of physical activity in improving negative emotions, cognitive impairment, and drug craving in people with methamphetamine use disorder (MUD). Methods: A total of 17 studies out of 133 found from Embase and PubMed were identified, reporting results from 1836 participants from MUD populations. Original research using clearly described physical activity as interventions and reporting quantifiable outcomes of negative mood, cognitive function and drug craving level in people with MUD were eligible for inclusion. We included prospective studies, randomized controlled trials, or intervention studies, focusing on the neurological effects of physical activity on MUD. Results: Taken together, the available clinical evidence showed that physical activity-based interventions may be effective in managing MUD-related withdrawal symptoms. Discussion: Physical exercise may improve drug rehabilitation efficiency by improving negative emotions, cognitive behaviors, and drug cravings. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024530359.

3.
Mater Today Bio ; 17: 100454, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36310542

RESUMO

Spinal cord injury is a kind of nerve injury disease with high disability rate. The bioscaffold, which presents a biomimetic structure, can be used as "bridge" to fill the cavity formed by the liquefaction and necrosis of spinal nerve cells, and connects the two ends of the fracture to promote the effective recovery of nerve function. Tubasatin A (TUBA) is a potent selective histone deacetylase 6 (HDAC6) inhibitor, which can inhibit the overexpression of HDAC6 after spinal cord injury. However, TUBA is limited by high efflux ratios, low brain penetration and uptake in the treatment of spinal cord injury. Therefore, an effective carrier with efficient load rate, sustained drug release profile, and prominent repair effect is urgent to be developed. In this study, we have prepared a bionic multichannel Tubasatin A loaded nanofiber conduit (SC-TUBA(+)) through random electrospinning and post-triple network bond crosslinking for inhibiting HDAC6 as well as promoting axonal regeneration during spinal cord injury treatment. The Tubasatin A-loaded nanofibers were shown to be successfully contained in poly(glycolide-co-ε-caprolactone) (PGCL)/silk fibroin (SF) matrix, and the formed PGCL/SF-TUBA nanofibers exhibited an uniform and smooth morphology and appropriate surface wettability. Importantly, the TUBA loaded nanofibers showed a sustained-release profile, and still maintains activity and promoted the extension of axonal. In addition, the total transection large span model of rat back and immunofluorescent labeling, histological, and neurobehavioral analysis were performed for inducing spinal cord injury at T9-10, evaluating therapeutic efficiency of SC-TUBA(+), and elucidating the mechanism of TUBA release system in vivo. All the results demonstrated the significantly reduced glial scar formation, increased nerve fiber number, inhibited inflammation, reduced demyelination and protected bladder tissue of TUBA-loaded nanofibers for spinal cord injury compared to SC-TUBA, SC and Control groups, indicating their great potential for injured spinal cord healing clinically.

4.
Stem Cells Int ; 2022: 1560943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530413

RESUMO

Heterotopic ossification (HO) is defined as the formation of bone tissues outside the bones, such as in the muscles. Currently, the mechanism of HO is still unclear. Tendon stem cells (TSCs) play important roles in the occurrence and development of HO. The inflammatory microenvironment dominated by macrophages also plays an important role in the course of HO. The commonly used clinical treatment methods, such as nonsteroidal anti-inflammatory drugs and radiotherapy, have relatively large side effects, and more efficient treatment methods are needed in clinical practice. Under physiological conditions, retinoic acid receptor (RAR) signal transduction pathway inhibits osteogenic progenitor cell aggregation and chondrocyte differentiation. We focus on palovarotene, a retinoic acid γ-receptor activator, showing an inhibitory effect on HO mice, but the specific mechanism is still unclear. This study was aimed at exploring the specific molecular mechanism of palovarotene by blocking osteogenic differentiation and HO formation of TSCs in vitro and in vivo in an inflammatory microenvironment. We constructed a coculture model of TCSs and polarized macrophages, as well as overexpression and knockdown models of the Smad signaling pathway of TCSs. In addition, a rat model of HO, which was constructed by Achilles tendon resection, was also established. These models explored the role of inflammatory microenvironment and Smad signaling pathways in the osteogenic differentiation of TSCs which lead to HO, as well as the reversal role played by palovarotene in this process. Our results suggest that, under the stimulation of inflammatory microenvironment and trauma, the injured site was in an inflammatory state, and macrophages were highly concentrated in the injured site. The expression of osteogenic and inflammation-related proteins, as well as Smad proteins, was upregulated. Osteogenic differentiation was performed in TCSs. We also found that TCSs activated Smad and NF-κB signaling pathways, which initiated the formation of HO. Palovarotene inhibited the aggregation of osteogenic progenitor cells and macrophages and attenuated HO by blocking Smad and NF-κB signaling pathways. Therefore, palovarotene may be a novel HO inhibitor, while other drugs or antibodies targeting Smad and NF-κB signaling pathways may also prevent or treat HO. The expressions of Smad5, Id1, P65, and other proteins may predict HO formation.

5.
Clin Exp Pharmacol Physiol ; 49(8): 881-892, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638441

RESUMO

Heterotopic ossification (HO) is a common disease characterized by pain, dysfunction and calcification. The mechanisms underlying HO have not been completely elucidated. Palovarotene, a retinoic acid receptor γ agonist, significantly inhibits the formation of HO in vivo. However, its specific mechanism of action remains unclear. Therefore, we aimed to evaluate the signalling pathways related to the formation of HO as well as the mechanism of palovarotene action. We constructed in vitro and in vivo models of HO. Osteogenic differentiation of bone mesenchymal stem cells (BMSCs) was observed by alizarin red and alkaline phosphatase staining assays in vitro. X-ray and haematoxylin-eosin staining were performed in vivo. Western blots and reverse transcription-polymerase chain reaction were performed to determine the levels of osteogenic- and inflammation-related genes. Immunofluorescence and immunocytochemistry were used to assess the levels of p65, the core molecule of the nuclear factor κ-B (NF-κB) signalling pathway. We demonstrated that, in vitro, under inflammatory stimulation, pathological calcium deposition increased in BMSCs. The levels of osteogenesis- and inflammation-related genes were also upregulated, along with an enhanced expression of p65. Immunofluorescence assays revealed that p65 entered the nucleus, thereby stimulating the downstream effectors of the NF-κB pathway. The above trends were reversed after palovarotene treatment. In conclusion, the NF-κB signalling pathway played an important role in HO, and palovarotene could alleviate HO by blocking the NF-κB cascade. Our results may provide a theoretical basis for palovarotene in the treatment of HO. Further studies on the side effects of palovarotene are warranted in the future.


Assuntos
Ossificação Heterotópica , Pirazóis , Transdução de Sinais , Estilbenos , Animais , Diferenciação Celular , Humanos , Inflamação , Células-Tronco Mesenquimais , NF-kappa B , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/prevenção & controle , Osteogênese , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia
6.
J Biomater Appl ; 36(8): 1458-1468, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35043696

RESUMO

Traumatic heterotopic ossification (THO) is a serious and common clinical post-traumatic complication for which there is no effective and safe drug treatment. Routine administration of nonsteroidal anti-inflammatory drugs (NSAIDs) after injury is extensively used approach for THO. However, serious adverse events can occur in the event of an overdose of NSAIDs. In our study, we have developed a poly(lactic acid-co-glycolic acid) (PLGA) microsphere by emulsifying solvent volatilization for the prolonged slow delivery of celecoxib (CLX). Three groups of celecoxib-poly(lactic acid-co-glycolic acid) microspheres (CLX-PLGA MPs) were prepared with particle sizes of 3.75±1.28 µm, 49.56±17.15 µm, and 94.98±42.53 µm. Meanwhile, related parameters of microspheres in each group were studied: drug loading (DL), encapsulation rate (EE), and slow-release behavior. The DL and EE of the 3 CLX-PLGA MPs did not vary significantly, and subsequently, we selected the second drug loading microspheres with a retardation period of about 70 days for subsequent experiments. Moreover, cellular and animal experiments suggest that the microspheres are biocompatible and can be safely applied to localized trauma tissue. Finally, it is demonstrated that CLX-PLGA MPs have an effect on inhibiting the osteogenic differentiation of bone marrow mesenchymal stem cells and have the potential to inhibit ectopic bone formation of the THO model in Sprague-Dawley rat. Therefore, this study suggests that CLX-PLGA MPs are expected to be applied topically in the early post-traumatic period to prevent the development of THO.


Assuntos
Ossificação Heterotópica , Ácido Poliglicólico , Animais , Celecoxib/uso terapêutico , Glicolatos , Ácido Láctico , Microesferas , Ossificação Heterotópica/tratamento farmacológico , Ossificação Heterotópica/etiologia , Osteogênese , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA