Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagn Pathol ; 18(1): 120, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924117

RESUMO

BACKGROUND: Renal transplant recipients (RTRs) have a 3- to 5-fold higher risk of developing malignant tumors than the general population, with new malignant tumors after transplantation considered to be the leading cause of death in RTRs. In pathological practice, it is rare for neoplasms with different histology to be located in the same organ. We report the first case of a synchronous papillary renal neoplasm with reverse polarity (PRNRP) and urothelial carcinoma (UC) in the ipsilateral kidney in an RTR. Molecular detection was conducted by next-generation sequencing. CASE PRESENTATION: A 68-year-old female suffered from uremia 19 years ago and underwent renal transplantation (RT) after receiving dialysis for 6 months. Hematuria occurred one month ago and an enhanced CT showed that there were two abnormal density foci in the middle and lower parts of the autologous left kidney. A laparoscopic left nephrectomy and ureterectomy were performed. Gross examination revealed a mass (I) in the left renal parenchyma, 2*1.8*1.5 cm in size, that protruded from the renal capsule, and a cauliflower-like mass (II), 5*2.5*2 cm in size, adjacent to the mass (I). Microscopic findings revealed these lesions were PRNRP and UC, respectively. PCR analysis revealed a KRAS gene mutation (G12D in exon 2) in the PRNRP, while NGS analysis revealed FGFR3 (S249C in exon 7) and KDM6A (Q271Ter in exon 10 and A782Lfs in exon 17) mutations in the UC. CONCLUSIONS: We report here for the first time an extraordinarily rare case of synchronous renal tumors of a PRNRP and UC in the ipsilateral kidney of an RTR. We identified simultaneous KRAS, FGFR3, and KDM6A mutations in two different renal masses in the ipsilateral kidney. Pathologic assessment with comparative molecular analysis of mutational profiles facilitates tumor studies after RT and may be of great value in clinical management strategies.


Assuntos
Carcinoma de Células Renais , Carcinoma de Células de Transição , Neoplasias Renais , Transplante de Rim , Neoplasias Primárias Múltiplas , Neoplasias da Bexiga Urinária , Idoso , Feminino , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células de Transição/diagnóstico , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Histona Desmetilases , Rim/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Transplante de Rim/efeitos adversos , Neoplasias Primárias Múltiplas/genética , Neoplasias Primárias Múltiplas/patologia , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias da Bexiga Urinária/genética
2.
Environ Res ; 235: 116684, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459946

RESUMO

Co-gasification technology is considered to be one of the most potential technologies for solid waste treatment, and the co-gasification treatment of rural solid waste (RSW) and biomass can effectively promote waste reduction and resource utilization. In the present study, the co-gasification of RSW and biomass in an updraft fixed bed gasifier was simulated using the Aspen Plus software, where the simulation results were validated via plant-scale experiments. In this scenario, the impacts of biomass source (i.e., rice husk, rice straw, tree bark and corn straw), co-gasification ratio (CGR) (0-40%) and air equivalence ratio (AER) (0.30-0.55) on the performance of the fixed-bed were investigated. Results showed that Aspen Plus could describe the plant-scale co-gasification process well. Besides, the tree bark-RSW system had the highest heat conversion efficiency of 6.00 MJ/kg the simulation temperature of the gasification layer increased greatly from 485 to 913 °C when the AER increased from 0.40 to 0.55. In addition, the co-gasification of RSW and tree bark could achieve the highest efficiency at the AER of 0.45 and CGR of 20% w, in which the gasification temperature reached 799 °C with the gasification efficiency of 57.17%. This study explored the use of co-gasification of RSW and biomass in rural areas by simulation and plant-scale processes, which promotes the commercial application of co-gasification technology and contributes to sustainable waste management in rural areas.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Gases , Biomassa , Eliminação de Resíduos/métodos , Temperatura Alta
3.
Theranostics ; 13(8): 2455-2470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215568

RESUMO

Background: Chronic liver diseases (CLD) frequently derive from hepatic steatosis, inflammation and fibrosis, and become a leading inducement of cirrhosis and hepatocarcinoma. Molecular hydrogen (H2) is an emerging wide-spectrum anti-inflammatory molecule which is able to improve hepatic inflammation and metabolic dysfunction, and holds obvious advantages in biosafety over traditional anti-CLD drugs, but existing H2 administration routes cannot realize the liver-targeted high-dose delivery of H2, severely limiting its anti-CLD efficacy. Method: In this work, a concept of local hydrogen capture and catalytic hydroxyl radical (·OH) hydrogenation is proposed for CLD treatment. The mild and moderate non-alcoholic steatohepatitis (NASH) model mice were intravenously injected with PdH nanoparticles firstly, and then daily inhaled 4% hydrogen gas for 3 h throughout the whole treatment period. After the end of treatment, glutathione (GSH) was intramuscularly injected every day to assist the Pd excretion. Results: In vitro and in vivo proof-of-concept experiments have confirmed that Pd nanoparticles can accumulate in liver in a targeted manner post intravenous injection, and play a dual role of hydrogen captor and ·OH filter to locally capture/store the liver-passing H2 during daily hydrogen gas inhalation and rapidly catalyze the ·OH hydrogenation into H2O. The proposed therapy significantly improves the outcomes of hydrogen therapy in the prevention and treatment of NASH by exhibiting a wide range of bioactivity including the regulation of lipid metabolism and anti-inflammation. Pd can be mostly eliminated after the end of treatment under the assistance of GSH. Conclusion: Our study verified a catalytic strategy of combining PdH nanoparticles and hydrogen inhalation, which exhibited enhanced anti-inflammatory effect for CLD treatment. The proposed catalytic strategy will open a new window to realize safe and efficient CLD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hidrogênio/uso terapêutico , Hidrogenação , Fígado/metabolismo , Cirrose Hepática/metabolismo
4.
World J Surg Oncol ; 21(1): 20, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691049

RESUMO

BACKGROUND: Mucosa-associated lymphoid tissue (MALT) lymphoma is a common, low-grade, malignant B-cell lymphoma. However, simultaneous MALT lymphoma in the thymus and lung is extremely rare, and concomitant adenocarcinoma of the lung is even rarer. Herein, we report a rare case of a collision tumor in which MALT lymphoma was found in both the thymus and lung with Sjögren's syndrome (SS) and adenocarcinoma in the lung. CASE PRESENTATION: A physical examination of a 32-year-old woman revealed an anterior superior mediastinal space-occupying lesion, and chest computed tomography (CT) indicated a nodular ground-glass opacity and irregular mixed-density focus in the right lung. All lung cancer-related tumor biomarkers were within normal ranges. The thymus and part of the lung tissue were surgically resected. The histopathology and molecular examinations confirmed MALT lymphoma of the thymus and lung with lung adenocarcinoma. SS was also diagnosed. No special postoperative treatment was performed for the MALT lymphoma, and the patient underwent immunosuppressive therapy for SS after 4 months of follow-up observation. CONCLUSIONS: MALT lymphoma of the thymus and lung tissues has no specific presentation on imaging and is difficult to differentiate from common malignant tumors, and the definite diagnoses of these tumors are highly dependent on histopathological examination in combination with molecular testing and cytogenetics. SS may be an important potential condition for the occurrence of MALT lymphoma in the thymus and lung. Additional similar cases are needed to clarify the biological pathways and potential molecular mechanisms of rare lymphomas and collision tumors.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Linfoma de Zona Marginal Tipo Células B , Síndrome de Sjogren , Feminino , Humanos , Adulto , Linfoma de Zona Marginal Tipo Células B/complicações , Linfoma de Zona Marginal Tipo Células B/diagnóstico , Linfoma de Zona Marginal Tipo Células B/patologia , Adenocarcinoma/complicações , Neoplasias Pulmonares/patologia , Síndrome de Sjogren/complicações , Síndrome de Sjogren/diagnóstico , Pulmão/patologia
5.
Exp Ther Med ; 24(4): 638, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36160905

RESUMO

Human antigen R (HuR), an RNA-binding protein, has been demonstrated to serve an oncogenic role in various types of cancer. Fibroblast growth factor receptor-like 1 (FGFRL1) has been shown to regulate small cell lung cancer (SCLC) chemoresistance. In the present study, the role of HuR in chemoresistance of SCLC, as well as its possible molecular mechanism involving FGFRL1, was explored by reverse transcription-quantitative PCR, western blotting, Cell Counting Kit-8 assay, flow cytometry and RNA immunoprecipitation. The results revealed that HuR expression levels were markedly upregulated in drug-resistant SCLC cell lines (H69AR and H446DDP) compared with in the parental cell lines (H69 and H446). Knockdown of HuR in drug-resistant SCLC cells enhanced drug sensitivity, cell apoptosis and cell cycle arrest. Furthermore, molecular mechanism studies indicated that HuR could bind and regulate FGFRL1 expression levels to increase FGFRL1 mRNA stability. Taken together, the present study suggested that HuR may mediate chemoresistance of SCLC by regulating FGFRL1 expression. HuR may represent a prognostic predictor and a potential target for overcoming chemoresistance in SCLC.

6.
Bioresour Technol ; 362: 127799, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007763

RESUMO

This paper is to explore the use of rural solid waste (RSW) for pyrolysis-gasification-combustion in pilot plant scale aiming at sustainable management of rural waste in remote areas. Based on the experimental data obtained during pilot scale operation, the temperature in the furnace needs to be kept at least at 600 °C through analyzing the pyrolysis weight loss of the main combustibles in the RSW. Besides, the effects of the air supply method and ventilation rate on the pilot plant performance were explored. Results indicate that the active air supply method positively contributes to the performance of the pilot plant. The plant processed 10 t RSW/d, producing 12.82 g/Nm3 of tar with 1.75 % of ash. This study confirms the feasibility of the pilot plant for RSW disposal and provides theoretical support for the optimization of pilot plant operation.


Assuntos
Pirólise , Eliminação de Resíduos , Gases , Eliminação de Resíduos/métodos , Resíduos Sólidos , Temperatura
7.
Medicine (Baltimore) ; 100(36): e27164, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516510

RESUMO

ABSTRACT: Plexiform fibromyxoma (PF) is a rare mesenchymal neoplasm which can be misdiagnosed as the gastrointestinal stromal tumor. This tumor almost formed a lobulated intramural/submucosal mass in the gastric antrum and prepyloric area. It was considered as a benign tumor that exhibited no recurrence, metastasis, or tumor-related mortality. In this study, we reported 2 cases of gastric PF. The first case was a PF patient coexisting with gastric adenocarcinoma. The second case occurred in the gastric upper body close to gastric fundus. They underwent distal gastrectomy and laparoscopic partial gastric resection, respectively. Both of them exhibited a plexiform growth pattern in the submucosa, muscularis propria, and subserosal adipose tissues. The nodules were composed of abundant myxoid or fibromyxoid matrix riching in small thin-walled blood vessels and bland-looking spindle cells. The first case partially showed staggered growth pattern of PF and adenocarcinoma. Immunohistochemically, the spindle cells were diffusely immunoreactive for SMA and vimentin, and focally immunoreactive for CD10. It was important to distinguish the PF from other spindle cell tumors involving the stomach.


Assuntos
Adenocarcinoma/diagnóstico , Fibroma/diagnóstico , Recidiva Local de Neoplasia/diagnóstico , Neoplasias Primárias Múltiplas/diagnóstico , Neoplasias Gástricas/diagnóstico , Adenocarcinoma/complicações , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Adulto , Diagnóstico Diferencial , Feminino , Fibroma/complicações , Fibroma/patologia , Fibroma/cirurgia , Gastrectomia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/complicações , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Neoplasias Primárias Múltiplas/complicações , Neoplasias Primárias Múltiplas/patologia , Neoplasias Primárias Múltiplas/cirurgia , Neoplasias Gástricas/complicações , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia
8.
Water Environ Res ; 92(2): 302-309, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31560145

RESUMO

A reduction in the use of aluminum (Al)-based flocculants in the treatment of drinking water is considered essential for human health reasons. In this study, a novel composite flocculant, made of carboxymethylpullulan-AlCl3 , is evaluated in a lab-scale, jar test system for the flocculation of kaolin. The results showed that the coagulation efficiency of carboxymethylpullulan-AlCl3 was more effective in reducing turbidity than the solo use of carboxymethylpullulan or AlCl3 . The optimum treatment conditions assessed by a response surface methodology were obtained at pH 6.50, 13.03 mg/L carboxymethylpullulan, and 94.87 mg/L AlCl3 . Zeta potential measurements and photometric dispersion analysis demonstrated that AlCl3 had a more significant influence on charge neutralization than carboxymethylpullulan, whilst carboxymethylpullulan facilitated absorption and the development of particle bridges. Thus, the composite flocculant possessed both advantages that enhanced flocculation, and decreased the dosage of AlCl3 , thereby reducing the potential for secondary environment pollution. When 90 mg/L carboxymethylpullulan-AlCl3 was added to the model kaolin suspension characterized by a turbidity of 50 nephelometric turbidity units, the zeta potential and the maximum flocculating activity were determined as -2.28 mV and 98.0%, respectively. The results provide insight into the development of an environment-friendly composite flocculant prepared from water-dissolved polysaccharide and inorganic flocculants. PRACTITIONER POINTS: A novel composite flocculant CMP-AlCl3 was achieved by combining CMP and AlCl3 for water treatment. The coagulation efficiency of CMP-AlCl3 was more effective in reducing turbidity than the solo use of CMP or AlCl3 . The flocculation efficiency and mechanism were investigated by Zeta potential analysis, surface morphology, electron microscopy, and coagulation.


Assuntos
Caulim , Purificação da Água , Floculação , Glucanos , Água
9.
Water Environ Res ; 92(5): 779-788, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31697421

RESUMO

Wastewater produced by the textile industry containing azo dyes and anthraquinone dyes is significant source of pollution to the environment and is toxic for aquatic life. To overcome the high-energy cost of traditional electrochemical oxidation, a custom-built power supply device for the degradation of anthraquinone and azo dyes by low voltage of 15.0-20.0 V pulsed discharge was investigated. Titanium coated with mixed oxide (Ti/IrO2 -RuO2 -SnO2 ) plates and pure titanium plates were used as the anode and cathode, respectively, for the generation of chlorine in the dye solution. For the anthraquinone dye Reactive Blue 19, 60.0% of the chemical oxygen demand (COD) and 22.0% of the total organic carbon (TOC) were removed using this system. A comparison of the direct current electrolysis and pulsed discharge revealed that using the pulsed discharge method reduced the energy cost by 68.6%. UV-visible, LC-MS, and GC-MS were used to identify the intermediate compounds formed during the degradation of Reactive Blue 19. The results indicate that in the process of oxidation by chlorine/hypochlorite, the chromophore group was first oxidized to -NH2 , followed by decolorization via chlorination of the aromatic rings. The results confirm that low-voltage pulse electrolysis can be used for the degradation of industrial dyes in waste effluents. PRACTITIONER POINTS: Low-voltage pulse electrolysis can be used for the degradation of industrial dyes and/or dyes in waste effluents. For anionic dye Reactive Blue 19, 60.0% of COD and 22.0% of TOC were removed using low-voltage (20.0 V) pulse electrolysis. The pulsed discharge method reduced the energy cost of this degradation process by 68.6% compared with direct current electrolysis. The intermediate compounds formed during the degradation of Reactive Blue 19 were confirmed by UV-visible spectroscopy, LC-MS, and GC-MS.


Assuntos
Compostos Azo , Poluentes Químicos da Água , Antraquinonas , Cloro , Eletrodos , Eletrólise , Oxirredução , Titânio
10.
Sci Total Environ ; 662: 511-520, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30699371

RESUMO

Immobilizing La(OH)3 nanoparticles (NPs) to porous hosts has been widely applied to inhibiting their inherent aggregation as well as the subsequent low utilization efficiency of La. In this study, a series of rice husk biochars (RHBCs) with high mesoporous rates were prepared and the effects of host pore structure and point of zero charge (pHpzc) on phosphate adsorption by La-modified RHBCs was particularly focused. Characterization results confirmed that La(OH)3 NPs were both confined in the pore channel and external surface of RHBCs. Adsorption kinetics and isotherms showed that La-modified RHBCs with higher mesoporous rates of the host showed a faster adsorption rate and La-modified RHBCs exhibited superior La utilization efficiency than many reported La-incorporated adsorbents. Phosphate could be effectively captured over a wide pH of 3-10 due to the high pHpzc of La-modified RHBCs. Moreover, the La-modified RHBCs showed satisfactory affinity towards phosphate in the presence of coexisting anions and the phosphate adsorption by La-RHBC9 was enhanced in the presence of Ca2+, while it was inhibited in the presence of Mg2+. The mesoporous structure of RHBCs strengthened the stability of La-modified RHBCs and weakened the inhibition of coexisting humic substances on phosphate adsorption through the "shielding effect".


Assuntos
Carvão Vegetal/química , Hidróxidos/química , Lantânio/química , Oryza/química , Fosfatos/análise , Cinética , Nanopartículas Metálicas/química , Porosidade , Eliminação de Resíduos Líquidos/instrumentação
11.
Opt Express ; 25(5): 5146-5155, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380779

RESUMO

We report the first monolithic integration of InGaAs channel field-effect transistors with InGaAs/GaAs multiple quantum wells (MQWs) lasers on a common platform, achieving a milestone in the path of enabling low power and high speed opto-electronic integrated circuits (OEICs). The III-V layers used for realizing transistors and lasers were grown epitaxially on the Ge substrate using molecular beam epitaxy (MBE). A Si-CMOS compatible process was developed to realize InGaAs n-FETs with subthreshold swing SS of 93 mV/decade, ION/IOFF ratio of more than 4 orders of magnitude with very low off-state leakage current, and a peak effective mobility of more than 2000 cm2/V·s. In addition, fabrication process uses a low overall processing temperature (≤ 400 °C) to maintain the high quality of the InGaAs/GaAs MQWs for the laser. Room temperature electrically-pumped lasers with a lasing wavelength of 1.03 µm and a linewidth of less than 1.7 nm were realized.

12.
Water Sci Technol ; 67(10): 2281-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23676399

RESUMO

In this study, we investigated the pretreatment of a high concentration pharmaceutical wastewater by catalytic wet air oxidation (CWAO) process. Different experiments were conducted to investigate the effects of the catalyst type, operating temperature, initial system pH, and oxygen partial pressure on the oxidation of the wastewater. Results show that the catalysts prepared by the co-precipitation method have better catalytic activity compared to others. Chemical oxygen demand (COD) conversion increased with the increase in temperature from 160 to 220 °C and decreased with the increase in pH. Moreover, the effect of the oxygen partial pressure on the COD conversion was significant only during the first 20 min of the reaction. Furthermore, the biodegradability of the wastewater improved greatly after CWAO, the ratio of BOD5/COD increased less than 0.1-0.75 when treated at 220 °C (BOD: biochemical oxygen demand).


Assuntos
Ar , Preparações Farmacêuticas/química , Poluentes Químicos da Água/química , Análise da Demanda Biológica de Oxigênio , Catálise , Temperatura Alta , Concentração de Íons de Hidrogênio , Oxirredução
13.
J Hazard Mater ; 186(1): 849-54, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21146288

RESUMO

The present study aims at investigating the performance of a vacuum ultraviolet (VUV, 185 nm) and TiO(2) oxidation system for the pretreatment of oily wastewater from restaurant. The influence of irradiation time, pH, dissolved oxygen (DO), the dosage of TiO(2) and the initial chemical oxygen demand (COD) concentration on COD removal efficiency was ascertained and optimum process conditions for stable and effective operation were determined. Under the optimum conditions of irradiation 10 min, initial COD 3981 mg/L, TiO(2) 150 mg/L, pH 7.0 and flow rate of air 40 L/h, the process of VUV and TiO(2)/VUV achieved removal efficiencies of COD, BOD(5) and oil as 50±3%, 37±2%, 86±3%, and 63±3%, 43±2%, 70±3%, respectively. The biodegradability factor f(B) of the wastewater was determined as 1.56 which indicated that the VUV/TiO(2) process improved the biodegradability of the oily wastewater significantly. Results clearly indicate that VUV/TiO(2) photolysis tends to destruct parts of COD, BOD(5), and ammonia, as well as enhances the biodegradability of the oily wastewater simultaneously. Thus, this technique could be used as a pretreatment step for conventional biological treatment of oily wastewater.


Assuntos
Restaurantes , Titânio , Raios Ultravioleta , Catálise , Fotoquímica , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA