Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(7): eabf7262, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171680

RESUMO

Mutations in tubulins cause distinct neurodevelopmental and degenerative diseases termed "tubulinopathies"; however, little is known about the functional requirements of tubulins or how mutations cause cell-specific pathologies. Here, we identify a mutation in the gene Tubb4a that causes degeneration of cerebellar granule neurons and myelination defects. We show that the neural phenotypes result from a cell type-specific enrichment of a dominant mutant form of Tubb4a relative to the expression other ß-tubulin isotypes. Loss of Tubb4a function does not underlie cellular pathology but is compensated by the transcriptional up-regulation of related tubulin genes in a cell type-specific manner. This work establishes that the expression of a primary tubulin mutation in mature neurons is sufficient to promote cell-autonomous cell death, consistent with a causative association of microtubule dysfunction with neurodegenerative diseases. These studies provide evidence that mutations in tubulins cause specific phenotypes based on expression ratios of tubulin isotype genes.


Assuntos
Modelos Genéticos , Tubulina (Proteína) , Cerebelo/metabolismo , Microtúbulos/metabolismo , Mutação , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
2.
Nat Med ; 25(7): 1131-1142, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31263285

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin gene (HTT), which codes for the pathologic mutant HTT (mHTT) protein. Since normal HTT is thought to be important for brain function, we engineered zinc finger protein transcription factors (ZFP-TFs) to target the pathogenic CAG repeat and selectively lower mHTT as a therapeutic strategy. Using patient-derived fibroblasts and neurons, we demonstrate that ZFP-TFs selectively repress >99% of HD-causing alleles over a wide dose range while preserving expression of >86% of normal alleles. Other CAG-containing genes are minimally affected, and virally delivered ZFP-TFs are active and well tolerated in HD neurons beyond 100 days in culture and for at least nine months in the mouse brain. Using three HD mouse models, we demonstrate improvements in a range of molecular, histopathological, electrophysiological and functional endpoints. Our findings support the continued development of an allele-selective ZFP-TF for the treatment of HD.


Assuntos
Alelos , Proteína Huntingtina/genética , Doença de Huntington/terapia , Mutação , Transcrição Gênica , Dedos de Zinco , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Neuroproteção , Repetições de Trinucleotídeos
3.
Dev Biol ; 408(2): 196-204, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546975

RESUMO

Congenital malformations are the major cause of infant mortality in the US and Europe. Due to rapid advances in human genomics, we can now efficiently identify sequence variants that may cause disease in these patients. However, establishing disease causality remains a challenge. Additionally, in the case of congenital heart disease, many of the identified candidate genes are either novel to embryonic development or have no known function. Therefore, there is a pressing need to develop inexpensive and efficient technologies to screen these candidate genes for disease phenocopy in model systems and to perform functional studies to uncover their role in development. For this purpose, we sought to test F0 CRISPR based gene editing as a loss of function strategy for disease phenocopy in the frog model organism, Xenopus tropicalis. We demonstrate that the CRISPR/Cas9 system can efficiently modify both alleles in the F0 generation within a few hours post fertilization, recapitulating even early disease phenotypes that are highly similar to knockdowns from morpholino oligos (MOs) in nearly all cases tested. We find that injecting Cas9 protein is dramatically more efficacious and less toxic than cas9 mRNA. We conclude that CRISPR based F0 gene modification in X. tropicalis is efficient and cost effective and readily recapitulates disease and MO phenotypes.


Assuntos
Sistemas CRISPR-Cas , Doença/genética , Xenopus/embriologia , Xenopus/genética , Animais , Desenvolvimento Embrionário/genética , Técnicas de Silenciamento de Genes/métodos , Testes Genéticos/métodos , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Humanos , Modelos Genéticos , Edição de RNA
4.
Exp Eye Res ; 79(6): 393-403, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15669141

RESUMO

AlphaA- and alphaB-crystallins are distinct antiapoptotic regulators. Regarding the antiapoptotic mechanisms, we have previously demonstrated that under staurosporine treatment, HalphaA- and HalphaB-crystallins can interact with Bax and Bcl-XS, proapoptotic members of the Bcl-2 family, to sequester their translocation into mitochondria, and thus prevent the staurosporine-induced apoptosis. In the present study, we further compared the anti-apoptotic mechanisms of HalphaA- and HalphaB-crystallin in preventing human lens epithelial cells from UVA-induced apoptosis. UVA-irradiation of human lens epithelial cells turned on the apoptotic death program. Moreover, associated with the activation of the death program, UVA also activated the RAF/MEK/ERK signaling pathway. In contrast, p38 kinase and JNK1/2 signaling pathways were not activated. Inhibition of the RAF/MEK/ERK pathway by a dominant negative mutant RAF1 greatly attenuated UVA-induced apoptosis. Expression of the exogenous human alphaB-crystallin prevented UVA-induced activation of RAF/MEK/ERK pathway and thus substantially abrogated UVA-induced apoptosis. In contrast, expression of the exogenous human alphaA-crystallin did not prevent UVA-induced activation of RAF/MEK/ERK pathway. Instead, it activated AKT kinase pathway to promote survival and thus counteracted the UVA-induced apoptosis. Together, our results for the first time reveal that by regulating multiple signaling pathways the two alpha-crystallins can prevent stress-induced apoptosis through different mechanisms.


Assuntos
Apoptose/efeitos da radiação , Cristalino/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , alfa-Cristalinas/metabolismo , Apoptose/fisiologia , Células Cultivadas , Ativação Enzimática/fisiologia , Células Epiteliais/metabolismo , Humanos , Cristalino/efeitos da radiação , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Raios Ultravioleta , Cadeia A de alfa-Cristalina/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...