Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Cell Mol Med ; 24(1): 317-327, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709715

RESUMO

Microtubule actin cross-linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3-E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast-specific Osterix (Osx) promoter-driven Macf1 conditional knockout mice (Macf1f/f Osx-Cre). The Macf1f/f Osx-Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/f Osx-Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/f Osx-Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/f Osx-Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas dos Microfilamentos/deficiência , Osteoblastos/metabolismo , Osteogênese , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Transcrição Sp7/metabolismo , Animais , Fenômenos Biomecânicos , Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Diferenciação Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Tamanho do Órgão , Osteoblastos/citologia
2.
Front Chem ; 7: 616, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552230

RESUMO

A series of multifunctional compounds (MFCs) 1a-1d based on 1,8-naphthalimide moiety were designed and synthesized. Due to the good fluorescence property and nucleic acid binding ability of 1,8-naphthalimide, these MFCs were applied in Cu2+ ion recognition, lysosome staining as well as RNA delivery. It was found that these MFCs exhibited highly selective fluorescence turn-off for Cu2+ in aqueous solution. The fluorescence emission of 1a-1d was quenched by a factor of 116-, 20-, 12-, and 14-fold in the presence of Cu2+ ions, respectively. Most importantly, 1a-Cu and 1b-Cu could be used as imaging reagents for detection of lysosome in live human cervical cancer cells (HeLa) using fluorescence microscopy. Furthermore, in order to evaluate the RNA delivery ability of 1a-1d, cellular uptake experiments were performed in HeLa, HepG2, U2Os, and MC3T3-E1 cell lines. The results showed that all the materials could deliver Cy5-labled RNA into the targeted cells. Among them, compound 1d modified with long hydrophobic chain exhibited the best RNA delivery efficiency in the four tested cell lines, and the performance was far better than lipofectamine 2000 and 25 kDa PEI, indicating the potential application in non-viral vectors.

3.
Org Biomol Chem ; 16(42): 7833-7842, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30084471

RESUMO

Structure-activity relationship (SAR) studies are very critical to design ideal gene vectors for gene delivery. However, It is difficult to obtain SAR information of low-generation dendrimers due to the lack of easy structural modification ways. Here, we synthesized a novel family of rigid aromatic backbone-based low-generation polyamidoamine (PAMAM) dendrimers. According to the number of primary amines, they were divided into two types: four-amine-containing PAMAM (DL1-DL5) and eight-amine-containing PAMAM (DL6-DL10). Due to the introduction of a rigid aromatic backbone, the low-generation PAMAM could be modified easier by different hydrophobic aliphatic chains. Several assays were used to study the interactions of the PAMAM dendrimers with plasmid DNA, and the results revealed that they not only had good DNA binding ability but also could efficiently condense DNA into spherical-shaped nanoparticles with suitable sizes and zeta potentials. The SAR studies indicated that the gene-transfection efficiency of the synthesized materials depended on not only the structure of their hydrophobic chains but also the number of primary amines. It was found that four-amine-containing PAMAM prepared from oleylamine (DL5) gave the best transfection efficiency, which was 3 times higher than that of lipofectamine 2000 in HEK293 cells. The cellular uptake mechanism mediated by DL5 was further investigated, and the results indicated that DL5/DNA complexes entered the cells mainly via caveolae and clathrin-mediated endocytosis. In addition, these low-generation PAMAMs modified with a single hydrophobic tail showed lower toxicity than lipofectamine 2000 in MC3T3-E1, MG63, HeLa, and HEK293 cells. These results reveal that such a type of low-generation polyamidoamines might be promising non-viral gene vectors, and also give us clues for the design of safe and high-efficiency gene vectors.


Assuntos
Dendrímeros , Vetores Genéticos , Poliaminas , Aminas/química , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/efeitos adversos , Dendrímeros/síntese química , Dendrímeros/química , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/efeitos adversos , Vetores Genéticos/síntese química , Vetores Genéticos/química , Células HeLa , Humanos , Nanopartículas/química , Plasmídeos/química , Relação Estrutura-Atividade
4.
PLoS One ; 10(1): e0116359, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25635858

RESUMO

The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (µ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.


Assuntos
Metabolismo Energético , Osteócitos/fisiologia , Transcriptoma , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Campos Magnéticos , Camundongos , Anotação de Sequência Molecular
5.
IEEE Trans Biomed Eng ; 62(3): 900-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25398175

RESUMO

The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (µg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (µg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Campos Magnéticos , Osteoclastos/citologia , Animais , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Sobrevivência Celular , Camundongos , Óxido Nítrico
6.
Curr Med Chem ; 22(6): 748-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25386816

RESUMO

Advanced studies of single stranded endogenous ~22 nt microRNAs (miRNAs) have demonstrated their diverse biological functions including control of cell differentiation, cell cycle and pathological conditions. Recent studies suggest the potential application of miRNAs in stem cell engineering. miRNAs play a vital role as post-transcriptional regulators of gene expression which controls osteoblasts-mediated bone formation and osteoclasts related bone remodeling. Transcriptional and post-transcriptional mechanisms regulate the differentiation of osteoblasts and osteogenesis. The differentiation of osteoblasts is a key step in the development of skeletal muscles and it is involved in triggering the signaling pathways. Signaling pathways like TGFβ, BMP and Wnt are regulated by miRNAs which in turn, are shown to be associated with bone dynamics and bone disorders. This recap highlights the role of miRNAs in osteoblasts differentiation and emphasizes their potential therapeutic role in metabolic bone disorders.


Assuntos
Doenças Ósseas/genética , Diferenciação Celular/genética , MicroRNAs/genética , Osteoblastos/citologia , Animais , Humanos
7.
Calcif Tissue Int ; 94(6): 569-79, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24687524

RESUMO

Life on Earth developed under the influence of normal gravity (1g). With evidence from previous studies, scientists have suggested that normal physiological processes, such as the functional integrity of muscles and bone mass, can be affected by microgravity during spaceflight. During the life span, bone not only develops as a structure designed specifically for mechanical tasks but also adapts for efficiency. The lack of weight-bearing forces makes microgravity an ideal physical stimulus to evaluate bone cell responses. One of the most serious problems induced by long-term weightlessness is bone mineral loss. Results from in vitro studies that entailed the use of bone cells in spaceflights showed modification in cell attachment structures and cytoskeletal reorganization, which may be involved in bone loss. Humans exposed to microgravity conditions experience various physiological changes, including loss of bone mass, muscle deterioration, and immunodeficiency. In vitro models can be used to extract valuable information about changes in mechanical stress to ultimately identify the different pathways of mechanotransduction in bone cells. Despite many in vivo and in vitro studies under both real microgravity and simulated conditions, the mechanism of bone loss is still not well defined. The objective of this review is to summarize the recent research on bone cells under microgravity conditions based on advances in the field.


Assuntos
Osso e Ossos/fisiologia , Ausência de Peso/efeitos adversos , Animais , Humanos , Mecanotransdução Celular/fisiologia
8.
Protein Pept Lett ; 22(3): 270-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25619121

RESUMO

Neuropeptide FF (NPFF) has been implicated in many physiological processes. Previously, we have reported that NPFF modulates the viability and nitric oxide (NO) production of RAW264.7 macrophages. In this study, we investigated the influence of NPFF on lipopolysaccharide (LPS)-mediated osteoclast formation of RAW264.7 cells. Our results suggest that, NPFF dose-dependently (1 nM, 10 nM and 100 nM) inhibited osteoclast formation, TRAP enzyme activity and bone resorption in osteoclasts induced by LPS respectively. Moreover, LPS-provoked NO release was also inhibited by NPFF treatment, indicating a NO-dependent pathway is mainly involved. Furthermore, the alterations of osteoclast marker genes were also assessed including TRAP, Cathepsin K, MMP-9, NFATc1 and Runx2. NPFF downregulated LPS-caused gene augmentations of TRAP, Cathepsin K and MMP-9, whereas showed no influences on NFATc1 and Runx2. In addition, NPFF receptor 2 (NPFFR2) mRNA expression was also augmented in response to NPFF treatment, hinting the involvement of NPFFR2 pathway. It should be mentioned that RF9 (1 µ M), a reported pharmacological inhibitor for NPFF receptors, exerted NPFF-like agonist properties as to attenuate osteoclastogenesis. Collectively, our findings provide new evidence for the in vitro activity of NPFF on osteoclasts, which may be helpful to extend the scope of NPFF functions.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Osteoclastos/efeitos dos fármacos , Receptores de Neuropeptídeos/genética , Fosfatase Ácida/metabolismo , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Dipeptídeos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Isoenzimas/metabolismo , Macrófagos/citologia , Camundongos , Oligopeptídeos/agonistas , Osteoclastos/metabolismo , Fosfatase Ácida Resistente a Tartarato , Regulação para Cima
9.
Toxicol Rep ; 1: 554-561, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-28962268

RESUMO

Imidacloprid (IC) is a systemic insecticide related to the tobacco toxin nicotine. IC is a toxic substance frequently used into combat insects, rodents and plants pests and other creatures that can pose problems for agriculture. We, therefore, planned this study to assess risk factors, biochemical and histological alterations associated with hepatotoxicity and nephrotoxicity. Forty-eight adult male albino mice were divided into four groups of 12 animals each. All the animals were given standard synthetic pellet diet. One group served as control, and the other three were served as experimental groups. Decrease in the body weight of the high dose group was observed at 15 mg/kg/day, and no mortality occurred during the treatment period. High dose of imidacloprid caused a significant elevation of serum clinical chemistry parameters, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvate kinase (SGPT), alkaline phosphatase (ALP) and total bilirubin (TBIL). Histology of liver and kidney indicates hepatotoxicity and nephrotoxicity at a high dose of imidacloprid. Based on the morphological, biochemical and histopathological analysis, it is evident that imidacloprid induced toxicological effects at 15 mg/kg/day to mice. The results of the present study demonstrate that IC had significant effects on body weight, liver functions and kidney (p < 0.05) at a dose of 15 mg/kg body weight. IC treatment 5 and 10 mg/kg/day may be considered as no observed adverse effect level (NOAEL) for mice. It was concluded that IC can cause hepatotoxicity and nephrotoxicity at a dose much lower than the LD50 (131 mg/kg body weight) in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...