Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38541543

RESUMO

Recently, short-fiber-reinforced thermoplastic composites (SFRTPCs) have been playing a more and more crucial role in the application of automotive interior materials due to their advantages of low density and environmental resistance properties. However, their relevant mechanical properties need to be optimized. Previous investigations revealed that the surface modification of fibers is useful to improve their mechanical properties. In this work, carbon fiber (CF)-reinforced polylactic acid (PLA) composites modified with MXene and graphene oxide (GO) were prepared by twin-screw extrusion and injection molding methods. Short CF was firstly modified with polyetherimide (PEI), then different weight ratios of MXene-GO (1:1) were subsequently modified on PEI-CF. Finally, the flexural properties and failure mechanisms were analyzed. The results showed that MXene-GO was successfully coated on CF surface, and the flexural strength and modulus of CF-PEI-MXene-GO-reinforced PLA (CF-PEI-MG/PLA) composite were improved compared to that of CF/PLA composite. In addition, the fracture sections of the composites were flat and white, and the fibers bonded well with PLA for CF-PEI-0.1MG/PLA composite compared to CF/PLA composite. The present study could provide a reference for further improving the mechanical performance of PLA-related composites.

2.
ACS Appl Mater Interfaces ; 15(24): 29023-29031, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279098

RESUMO

Quasi-solid-state supercapacitors have wide application prospects in flexible and scalable electronics, which require high capacity, simple form factor, and excellent mechanical robustness. However, it is a challenge to have all these benefits in one material. Addressing this, we report a composite hydrogel with excellent mechanical durability and freezing resistance. The designed composite hydrogel acts both as a load-bearing layer to maintain its structure during deformation and as a permeable binder to stimulate the interfacing between the conductive electrode and the electrolyte to reduce the interface resistance. Flexible supercapacitors are assembled with composite hydrogels and high-performance MnO2/carbon cloth, which has excellent performance and can store energy at different temperatures or bending states. These results show that the tough hydrogel facilitates the improvement of electrical and mechanical stability, showing great potential in wide-temperature wearable devices.

3.
ACS Appl Mater Interfaces ; 14(8): 10998-11005, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35188368

RESUMO

A new three-dimensional (3D) printing gel is developed to construct hierarchically porous ceramics with adjustable millimeter-, micrometer-, and nanometer-scale size for application in thermal management. Not only does the gel based on supramolecular micelles exhibit excellent DIW 3D printability but also the supramolecular micelles act as templates that can precisely control the structure of micrometer-scale pores. The effect of millimeter- and µmicrometer-scale size on properties of porous ceramics is investigated in detail. The 3D-printed ceramic foam with millimeter-scale pores and smaller micrometer-scale pores shows better thermal insulation and lower compressive strength. For the thermal insulation, the local temperature of a chip exposed to contact heat is only 34.2 °C in the presence of a printed foam cap with a pore size of 41.5 µm, while the local temperature is 54.8 °C in the absence of the printed foam cap. The study provides a new method to construct hierarchically porous alumina ceramics with precisely tunable size, avoiding the issues of subtractive manufacturing and opening up new applications in portable devices or consumer electronics.

4.
Adv Sci (Weinh) ; 9(9): e2105510, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35083883

RESUMO

Manganese dioxide (MnO2 ) is considered as a strong candidate in the field of new-generation electronic equipment. Herein, Co-MnO2 has excellent electrochemical properties in tests as the cathode electrode of sodium-ion batteries and potassium-ion batteries. The rate performance remains at 50.2 mAh g-1 at 200 mA g-1 for sodium-ion batteries. X-ray diffraction (XRD) is utilized to evaluate the crystal structure transition from Co0.2 -MnO2 to NaMnO2 with discharge to 1 V, proving that Co-doping does indeed facilitate the acceleration of ion transport and support layer spacing to stabilize the structure of MnO2 . Subsequently, highly conductive (0.0848 S cm-1 ) gel-type supercapacitors are prepared by combining Co0.2 -MnO2 , potassium hydroxide (KOH), and poly(vinyl alcohol) (PVA) together. Co0.2 -MnO2 provides capacitive behavior and strengthens the hydrogen bonds between molecules. KOH acts as an ion crosslinker to enhance hydrogen bond and as electrolyte to transport ions. 5 wt% Co0.2 -MnO2 @KOH/PVA has superb mechanical endurance, appreciable electrical conductivity, and ideal capacitive behavior. The quasi-solid-state supercapacitor demonstrates stabilized longevity (86.5% at 0.2 mA cm-3 after 500 cycles), which can greatly promote the integration of flexible energy storage fabric devices.

5.
Materials (Basel) ; 12(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731528

RESUMO

Three-dimensional (3D) five-directional braided composites are extensively applied in aeronautics and national defense due to their integrity and structural superiorities. In this paper, 3D five-directional braided carbon/epoxy composites were manufactured, and the high temperature mechanical response and failure mechanisms of composites with braiding angles of 21° and 32° were studied. The out-of-plane compression tests of composites with different braiding angles were conducted at temperatures ranging from 25 °C to 180 °C. Then compression stress-strain curves, compression mechanical response, and failure modes of composites at high temperatures were analyzed and compared. The results show that compression stress-strain curves linearly increased at the initial stage and dropped at various degrees at different temperatures for composites with different braiding angles. The temperature and braiding angle were both important parameters affecting out-of-plane compression properties of 3D five-directional braided composites. Mechanical properties decreased with increasing temperature for both 21° and 32° specimens. Moreover, composites with a small braiding angle possessed higher properties at each temperature point. The morphologies manifested that the failures were a symmetric ±45° shear crack for 21° specimens and a thorough 45° shear crack for 32° specimens, and a 45° fracture weakened with increasing temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...