Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 14, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191422

RESUMO

BACKGROUND: Trichomonas vaginalis is a protozoan parasite, widely recognized as the most prevalent non-viral sexually transmitted infection (STI) globally. This infection is linked to various complications, including pelvic inflammatory disease, adverse pregnancy outcomes, and an increased risk of acquiring HIV. Current molecular detection methods for T. vaginalis are often costly and technically challenging. METHODS: We developed a novel detection method for T. vaginalis using a multi-enzyme isothermal rapid amplification-clustered regularly interspaced short palindromic repeats (MIRA-CRISPR)/Cas13a-lateral flow device (LFD). This assay targets the repeated DNA sequence (GenBank: L23861.1) of T. vaginalis and is performed at a constant temperature of 37 °C for approximately 1 hour. RESULTS: The detection limit of genomic DNA (gDNA) using our protocol was 1 × 10-4 ng/µl. Specificity was confirmed by the absence of cross-reaction with gDNA from various other microorganisms such as Staphylococcus aureus, Lactobacillus taiwanensis, Escherichia coli, Monilia albicans, Giardia lamblia, or Toxoplasma gondii. Among 30 clinical samples tested, the positive rates of T. vaginalis detection were 33.33% (10/30) by wet mount microscopy, 40% (12/30) by nested polymerase chain reaction (PCR), 40% (12/30) by MIRA-CRISPR/Cas13a-LFD, and 40% (12/30) by the culture method. Compared with the culture method, the gold standard for diagnosing trichomoniasis, wet mount microscopy showed a sensitivity of 83.3% and moderate diagnostic agreement (kappa value = 0.87). Both nested PCR and MIRA-CRISPR/Cas13a-LFD exhibited 100% sensitivity and excellent diagnostic agreement (kappa value = 1). CONCLUSIONS: The MIRA-CRISPR/Cas13a-LFD method is a convenient, rapid, stable, and accurate diagnostic tool for detecting T. vaginalis. This method has the potential to enhance the diagnosis and management of vaginitis, offering a significant improvement over existing diagnostic techniques.


Assuntos
Tricomoníase , Trichomonas vaginalis , Animais , Feminino , Gravidez , Sequência de Bases , Trichomonas vaginalis/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA , Escherichia coli
2.
Acta Trop ; 246: 106996, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536435

RESUMO

Trichomonas vaginalis (T. vaginalis) is a widespread and important sexually transmitted pathogen. Adherence to the surface of the host cell is the precondition forthis parasite's parasitism and pathogenicity. Adhesion protein 65 (TvAP65) plays a key role in the process of adhesion. However, how TvAP65 mediates the adhesion and pathogenicity of T. vaginalis to host cellsis unclear. In this study, we knocked down the expression of TvAP65 in trophozoites by small RNA interference. The number of T. vaginalis trophozoites adhering to VK2/E6E7 cells was decreased significantly, and the inhibition of VK2/E6E7 cells proliferation and VK2/E6E7 cells apoptosis and death induced by T. vaginalis were reduced, after the expression of TvAP65 was knocked down. Animal challenge experiments showed that the pathogenicity of trophozoites was decreased by passive immunization with anti-rTvAP65 PcAbs or blocking the TvAP65 protein. Immunofluorescence analysis showed that TvAP65 could bind to VK2/E6E7 cells. In order to screen the molecules interacting with TvAP65 on the host cells, we successfully constructed the cDNA library of VK2/E6E7 cells, and thirteen protein molecules interacting with TvAP65 were screened by yeast two-hybrid system. The interaction between TvAP65 and BNIP3 was further confirmed by coimmunoprecipitation and colocalization. When both TvAP65 and BNIP3 were knocked down by small RNA interference, the number of T. vaginalis adhering to VK2/E6E7 cells and the inhibition of VK2/E6E7 cells proliferation were significantly lower than those of the group with knockdown of TvAP65 or BNIP3 alone. Therefore, the interaction of TvAP65 and BNIP3 in the pathogenesis of T. vaginalis infecting host cells is not unique and involves other molecules. Our study elucidated that the interaction between TvAP65 and BNIP3 mediated the adhesion and pathogenicity of T. vaginalis to host cells, provided a basis for searching for the drug targets of anti-T. vaginalis, and afforded new ideas for the prevention and treatment of trichomoniasis.


Assuntos
Parasitos , Tricomoníase , Trichomonas vaginalis , Animais , Trichomonas vaginalis/genética , Parasitos/metabolismo , Virulência , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trofozoítos , Adesão Celular , Tricomoníase/parasitologia
3.
Parasit Vectors ; 16(1): 210, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344876

RESUMO

BACKGROUND: Trichomonas vaginalis is a widespread and important sexually transmitted pathogen. Adherence to the surface of the host cell is the precondition for the parasitism and pathogenicity of this parasite. Trichomonas vaginalis adhesion protein 33 (TvAP33) plays a key role in the process of adhesion, but how this protein mediates the adhesion and pathogenicity of T. vaginalis to host cells is unclear. METHODS: The expression of TvAP33 in trophozoites was knocked down by small interfering RNA. VK2/E6E7 cells and mice infected with T. vaginalis were used to evaluate the pathogenicity of T. vaginalis. We constructed a complementary DNA library of VK2/E6E7 cells and screened the protein molecules interacting with TvAP33 by the yeast two-hybrid system. The interaction between TvAP33 and BNIP3 (Bcl-2 interacting protein 3) was analyzed by co-immunoprecipitation and colocalization. RESULTS: Following knockdown of TvAP33 expression, the number of T. vaginalis trophozoites adhering to VK2/E6E7 cells decreased significantly, and the inhibition of VK2/E6E7 cell proliferation and VK2/E6E7 cell apoptosis and death induced by T. vaginalis were reduced. Animal challenge experiments showed that the pathogenicity of trophozoites decreased following passive immunization with TvAP33 antiserum or blocking of the TvAP33 protein. Immunofluorescence analysis revealed that TvAP33 could bind to VK2/E6E7 cells. Eighteen protein molecules interacting with TvAP33 were identified by the yeast two-hybrid system. The interaction between TvAP33 and BNIP3 was further confirmed by co-immunoprecipitation and colocalization. When the expression of both TvAP33 and BNIP3 in trophozoites was knocked down by small RNA interference, the number of T. vaginalis adhering to VK2/E6E7 cells and the inhibition of VK2/E6E7 cell proliferation were significantly lower compared to trophozoites with only knockdown of TvAP33 or only BNIP3. Therefore, the interaction of TvAP33 and BNIP3 in the pathogenesis of T. vaginalis infecting host cells is not unique and involves other molecules. CONCLUSIONS: Our study showed that the interaction between TvAP33 and BNIP3 mediated the adhesion and pathogenicity of T. vaginalis to host cells, providing a basis for searching for drug targets for T. vaginalis as well as new ideas for the prevention and treatment of trichomoniasis.


Assuntos
Tricomoníase , Trichomonas vaginalis , Animais , Camundongos , Trichomonas vaginalis/genética , Virulência , Trofozoítos
4.
J Eukaryot Microbiol ; 70(3): e12963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632692

RESUMO

Trichomoniasis is a common and curable sexually transmitted disease worldwide. The rapid, convenient, and accurate diagnosis of trichomoniasis is an important link in the prevention and treatment of the disease. The current detection methods of Trichomonas vaginalis are mainly wet mount microscopy, culture, nested PCR, and loop-mediated isothermal amplification. However, these detection methods have some shortcomings. In this study, a recombinant enzyme polymerase amplification (RPA) assay had been conducted to detect T. vaginalis. The target gene and the corresponding primers were screened, and the reaction system and conditions were optimized in the assay of RPA. The sensitivity and specificity of this detection method were analyzed. The detection efficiency of wet mount microscopy, culture, nested PCR, and RPA was compared by testing 53 clinical samples from vaginal secretions. By screening, the actin gene of T. vaginalis could be used as a target gene for RPA detection of T. vaginalis, and the optimum reaction condition to amplify the actin gene by RPA was at 39°C for 30 min. The detection limit of T. vaginalis DNA using RPA was 1 pg, corresponding to a sensitivity of approximately five trophozoites. The RPA assay demonstrated high specificity for T. vaginalis, and there was no cross-reactivity with Giardia lamblia, Escherichia coli, Lactobacillus, Toxoplasma gondii, Staphylococcus aureus, and Candida albicans. Of the 53 clinical samples, the positive rates of T. vaginalis detected by wet mount microscopy, culture, nested PCR and RPA were 50.9 4% (27/53), 71.7% (38/53), 71.7% (38/53), and 69.81% (37/53), respectively. Compared with culture which was used as the gold standard for diagnosing trichomoniasis, testing clinical samples by wet mount microscopy showed 71.05% sensitivity, 100% specificity, and moderate diagnostic agreement with the culture (K = 0.581, Z = 4.661, p < 0.001). The nested PCR showed 100% sensitivity, 100% specificity, and excellent diagnostic agreement (K = 1, Z = 7.28, p < 0.001), while RPA displayed 97.37% sensitivity, 100% specificity, and excellent diagnostic agreement (K = 0.954, Z = 6.956, p < 0.001). At the present study, rapid amplification of actin gene by RPA could be used as a tool for detection of T. vaginalis. The detection method of RPA was more sensitive than wet mount microscopy and displayed excellent specificity. Moreover, RPA amplification of actin gene did not require a PCR instrument and the amplification time was shorter than that of ordinary PCR. Therefore, the RPA assay was proposed in this study as a point-of-care examination and a diagnostic method of T. vaginalis infection, which exhibited the potential value in the treatment and prevention of trichomoniasis.


Assuntos
Tricomoníase , Trichomonas vaginalis , Feminino , Humanos , Trichomonas vaginalis/genética , Actinas/genética , Tricomoníase/diagnóstico , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
5.
Acta Trop ; 238: 106794, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535511

RESUMO

Trichomonas vaginalis (T. vaginalis) infection is the most common non-viral sexually transmitted disease (STD) in the world. It can cause male reproductive dysfunction and infertility. However, the pathogenic mechanism is not clear. In this study, the excretory secretory proteins of T. vaginalis (TvESPs) were collected, concentrated, and sterilized. After sperm co-cultured with TvESPs, the survival rate and motility of sperms were analyzed by seminal routine examination, and the results showed that the TvESPs could significantly reduce the survival rate and motility of sperms. Fluorescence staining displayed that TvESPs could destroy the integrity of sperm acrosomes. Flow cytometry indicated that TvESPs induced sperm apoptosis. By mouse in vitro fertilization, we confirmed that TvESPs could significantly reduce the fertilization ability of sperms and negatively affect the development of the fertilized ovum. Via semi-quantitative analysis, we found that the apoptosis-related p27, SMAC, p53, BAX, BCL-2, XIAP, and BCL-W molecules were down-regulated in mouse sperm cells after interaction between the sperms and TvESPs, which played an important role in regulating sperm apoptosis. In conclusion, our study showed that T. vaginalis degraded semen quality and negatively affected male fertility by TvESPs. TvESPs may damage sperms by breaking the balance between sperm pro-apoptotic and anti-apoptotic molecules. This study proves that T. vaginalis infection is a risk factor for infertility.


Assuntos
Infertilidade , Trichomonas vaginalis , Masculino , Animais , Camundongos , Análise do Sêmen , Sêmen , Fertilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA