Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol ; 54(7): 379-390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492779

RESUMO

Cryptosporidium spp. are important diarrhea-associated pathogens in humans and livestock. Among the known species, Cryptosporidium xiaoi, which causes cryptosporidiosis in sheep and goats, was previously recognized as a genotype of the bovine-specific Cryptosporidium bovis based on their high sequence identity in the ssrRNA gene. However, the lack of genomic data has limited characterization of the genetic differences between the two closely related species. In this study, we sequenced the genomes of two C. xiaoi isolates and performed comparative genomic analysis to identify the sequence uniqueness of this ovine-adapted species compared with other Cryptosporidium spp. Our results showed that C. xiaoi is genetically related to C. bovis as shown by their 95.8% genomic identity and similar gene content. Consistent with this, both C. xiaoi and C. bovis appear to have fewer genes encoding mitochondrial metabolic enzymes and invasion-related protein families. However, they appear to possess several species-specific genes. Further analysis indicates that the sequence differences between these two Cryptosporidium spp. are mainly in 24 highly polymorphic genes, half of which are located in the subtelomeric regions. Some of these subtelomeric genes encode secretory proteins that have undergone positive selection. In addition, the genomes of two C. xiaoi isolates, identified as subtypes XXIIIf and XXIIIh, share 99.9% nucleotide sequence identity, with six highly divergent genes encoding putative secretory proteins. Therefore, these species-specific genes and sequence polymorphism in subtelomeric genes probably contribute to the different host preference of C. xiaoi and C. bovis.


Assuntos
Criptosporidiose , Cryptosporidium , Genômica , Filogenia , Cryptosporidium/genética , Cryptosporidium/classificação , Animais , Criptosporidiose/parasitologia , Ovinos , Cabras , Genoma de Protozoário , Bovinos , Especificidade de Hospedeiro , Doenças dos Ovinos/parasitologia , Doenças das Cabras/parasitologia
2.
Parasit Vectors ; 15(1): 85, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279196

RESUMO

BACKGROUND: Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi are important zoonotic protists in humans and animals around the world, including nonhuman primates (NHPs). However, the prevalence, genetic identity and zoonotic potential of these pathogens in wild NHPs remain largely unclear. METHODS: A total of 348 fecal samples were collected from wild NHPs at four locations in Yunnan, southwestern China, and analyzed for these pathogens using nested PCR targeting various genetic loci and DNA sequence analysis of the PCR products. The zoonotic potential of the pathogens was assessed by comparing the genetic identity of the pathogens in these animals with that previously reported in humans. RESULTS: Altogether, two (0.6%), 25 (7.2%) and 30 (8.6%) samples were positive for Cryptosporidium sp., G. duodenalis and E. bieneusi, respectively. The Cryptosporidium sp. identified belonged to C. parvum subtype IIdA20G1. Both assemblages A (n = 3) and B (n = 22) were identified among G. duodenalis-positive animals. Five genotypes in zoonotic Group 1 were identified within E. bieneusi, including Type IV (n = 13), D (n = 7), Peru8 (n = 6), MMR86 (n = 2) and HNFS01 (n = 2). All genotypes and subtypes identified are known human pathogens or phylogenetically related to them. CONCLUSIONS: Data from this study suggest a common occurrence of zoonotic genotypes of G. duodenalis and E. bieneusi in wild NHPs in southwestern China.


Assuntos
Criptosporidiose , Cryptosporidium , Enterocytozoon , Giardia lamblia , Giardíase , Microsporidiose , Animais , China/epidemiologia , Criptosporidiose/epidemiologia , Cryptosporidium/genética , Enterocytozoon/genética , Giardia lamblia/genética , Giardíase/epidemiologia , Giardíase/veterinária , Microsporidiose/epidemiologia , Microsporidiose/veterinária , Primatas
3.
Pathogens ; 9(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276616

RESUMO

Bamboo rats (Rhizomys sinensis) are widely farmed in Guangdong, China, but the distribution and public health potential of Cryptosporidium spp. in them are unclear. In this study, 724 fecal specimens were collected from bamboo rats in Guangdong Province and analyzed for Cryptosporidium spp. using PCR and sequence analyses of the small subunit rRNA gene. The overall detection rate of Cryptosporidium spp. was 12.2% (88/724). By age, the detection rate in animals under 2 months (23.2% or 13/56) was significantly higher than in animals over 2 months (11.2% or 75/668; χ2 = 6.95, df = 1, p = 0.0084). By reproduction status, the detection rate of Cryptosporidium spp. in nursing animals (23.1% or 27/117) was significantly higher than in other reproduction statuses (6.8% or 4/59; χ2 = 7.18, df = 1, p = 0.0074). Five Cryptosporidium species and genotypes were detected, including Cryptosporidium bamboo rat genotype I (n = 49), C. parvum (n = 31), Cryptosporidium bamboo rat genotype III (n = 5), C. occultus (n = 2), and C. muris (n = 1). The average numbers of oocysts per gram of feces for these Cryptosporidium spp. were 14,074, 494,636, 9239, 394, and 323, respectively. The genetic uniqueness of bamboo rat genotypes I and III was confirmed by sequence analyses of the 70 kDa heat shock protein and actin genes. Subtyping C. parvum by sequence analysis of the 60 kDa glycoprotein gene identified the presence of IIoA15G1 (n = 20) and IIpA6 (n = 2) subtypes. The results of this study indicated that Cryptosporidium spp. are common in bamboo rats in Guangdong, and some of the Cryptosporidium spp. in these animals are known human pathogens.

4.
Parasit Vectors ; 13(1): 149, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32204732

RESUMO

BACKGROUND: Bamboo rats are widely farmed in southern China for meat, but their potential in transmitting pathogens to humans and other farm animals remains unclear. METHODS: To understand the transmission of Cryptosporidium spp. in these animals, 709 fecal samples were collected in this study from Chinese bamboo rats (Rhizomys sinensis) on nine farms in Jiangxi, Guangxi and Hainan provinces, China. They were analyzed for Cryptosporidium spp. using PCR and sequence analyses of the small subunit rRNA gene. Cryptosporidium parvum, C. parvum-like and C. ubiquitum-like genotypes identified were subtyped by sequence analysis of the 60 kDa glycoprotein (gp60) gene. RESULTS: Altogether, Cryptosporidium spp. were detected in 209 (29.5%) samples. The detection rate in samples from animals under two months of age (70.0%,105/150) was significantly higher than in samples from animals above 2 months (18.6%, 104/559; χ2 = 150.27, df = 1, P < 0.0001). Four Cryptosporidium species/genotypes were identified: C. parvum (n = 78); C. occultus (n = 1); a new genotype that is genetically related to C. ubiquitum (n = 85); and another new genotype that is genetically related to C. parvum (n = 44). Among them, C. parvum (27,610 ± 71,911 oocysts/gram of feces) and the C. parvum-like genotype (38,679 ± 82,811 oocysts/gram of feces) had higher oocyst shedding intensity than the C. ubiquitum-like genotype (2470 ± 7017 oocysts/gram of feces) and the C. occultus (1012 oocysts/gram of feces). The C. parvum identified belonged to three subtypes in two rare subtype families, including IIpA9 (n = 43), IIpA6 (n = 6) and IIoA15G1 (n = 9), while the C. parvum-like and C. ubiquitum-like genotypes generated very divergent gp60 sequences. CONCLUSIONS: Results of the present study suggest that bamboo rats on the study farms were infected with diverse Cryptosporidium species and divergent C. parvum subtypes, which probably had originated from their native habitats. As similar C. parvum subtypes have been recently detected in humans and farmed macaques, attentions should be paid to the potential role of these new farm animals in the transmission of zoonotic pathogens.


Assuntos
Criptosporidiose/parasitologia , Cryptosporidium parvum/genética , Cryptosporidium parvum/isolamento & purificação , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Fazendas , Muridae/parasitologia , Animais , China/epidemiologia , Criptosporidiose/epidemiologia , DNA de Protozoário , Fezes/parasitologia , Genes de RNAr , Genótipo , Humanos , Epidemiologia Molecular , Oocistos , Reação em Cadeia da Polimerase/veterinária , Zoonoses/diagnóstico , Zoonoses/parasitologia
5.
Parasitol Res ; 119(3): 1101-1108, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32006227

RESUMO

Limited data are available on infection rates and genetic identity of Enterocytozoon bieneusi and Giardia duodenalis in horses and donkeys. In this study, 865 fecal specimens were collected from donkeys (n = 540) and horses (n = 325) in three provinces and autonomous regions in northern China during 2015-2019. Enterocytozoon bieneusi was detected and genotyped by PCR and sequence analyses of the ribosomal internal transcribed spacer (ITS) and G. duodenalis was detected and genotyped by PCR and sequence analyses of the ß-giardin, glutamate dehydrogenase, and triosephosphate isomerase genes. The overall infection rates of E. bieneusi and G. duodenalis were 21.9% (118/540) and 11.5% (62/540) in donkeys, and 7.4% (24/325) and 2.8% (9/325) in horses, respectively. These differences in infection rates of E. bieneusi and G. duodenalis between donkeys and horses were significant (χ2 = 30.9, df = 1, P < 0.0001; χ2 = 20.4, df = 1, P < 0.0001, respectively). By age, the 28.9% infection rate of E. bieneusi in donkeys under 6 months was significantly higher than that in animals over 6 months (6.0%; χ2 = 35.2, df = 1, P < 0.0001). In contrast, donkeys of 6-12 months had higher infection rate (35.9%) of G. duodenalis than donkeys under 6 months (9.9%; χ2 = 22.1, df = 1, P < 0.0001) and over 12 months (8.7%; χ2 = 17.3, df = 1, P < 0.0001). In horses, animals of > 12 months had significantly higher infection rate (31.1%) of E. bieneusi than horses under 6 months (3.4%; χ2 = 29.4, df = 1, P < 0.0001) and 6-12 months (3.8%; χ2 = 26.1, df = 1, P < 0.0001). Twenty genotypes of E. bieneusi were detected, including six known ones and 14 new genotypes. Among them, nine genotypes in 45% E. bieneusi-positive specimens belonged to the zoonotic group 1. Similarly, three G. duodenalis assemblages were detected, including A (in 2 horses and 30 donkeys), B (in 6 horses and 29 donkeys), and E (in 1 horse); three donkeys had coinfections of assemblages A and B. The assemblage A isolates identified all belong to the sub-assemblage AI. These results indicate that unlike in other farm animals, there is a common occurrence of zoonotic E. bieneusi and G. duodenalis genotypes in horses and donkeys.


Assuntos
Enterocytozoon/fisiologia , Equidae/parasitologia , Giardia lamblia/fisiologia , Giardíase/veterinária , Cavalos/parasitologia , Microsporidiose/veterinária , Animais , Animais Domésticos/parasitologia , China/epidemiologia , Enterocytozoon/classificação , Enterocytozoon/genética , Fezes/parasitologia , Genes de Protozoários/genética , Genótipo , Giardia lamblia/classificação , Giardia lamblia/genética , Giardíase/epidemiologia , Giardíase/parasitologia , Especificidade de Hospedeiro , Microsporidiose/epidemiologia , Microsporidiose/parasitologia , Filogenia , Prevalência , Zoonoses/transmissão
6.
Microorganisms ; 7(9)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540508

RESUMO

Subtype families of Cryptosporidium parvum differ in host range, with IIa and IId being found in a broad range of animals, IIc in humans, and IIo and IIp in some rodents. Previous studies indicated that the subtelomeric cgd6_5520-5510 gene in C. parvum is lost in many Cryptosporidium species, and could potentially contribute to the broad host range of the former. In this study, we identified the presence of a second copy of the gene in some C. parvum subtype families with a broad host range, and showed sequence differences among them. The sequence differences in the cgd6_5520-5510 gene were not segregated by the sequence type of the 60 kDa glycoprotein gene. Genetic recombination appeared to have played a role in generating divergent nucleotide sequences between copies and among subtype families. These data support the previous conclusion on the potential involvement of the insulinase-like protease encoded by the subtelomeric cgd6_5520-5510 gene in the broad host range of C. parvum IIa and IId subtypes.

7.
Infect Genet Evol ; 75: 103954, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31295579

RESUMO

Few studies have been conducted on the distribution of Cryptosporidium species and subtypes in equine animals. In this study, 878 stool specimens were collected during 2015-2019 from 551 donkeys and 327 horses in Shandong, Xinjiang, and Inner Mongolia, China and screened for Cryptosporidium spp. by PCR analysis of the small subunit rRNA gene. The Cryptosporidium species presented were identified by sequence analysis of the PCR products and subtyped by sequence analysis of the 60 kDa glycoprotein gene. The infection rates of Cryptosporidium spp. in horses and donkeys were 3.1% (10/327) and 14.5% (80/551), respectively. Four Cryptosporidium species/genotypes were identified, including C. parvum (in 5 horses), C. hominis (in 75 donkeys), Cryptosporidium horse genotype (in 5 horses and 4 donkeys) and a new genotype that is genetically related to Cryptosporidium mink genotype (in 1 donkey). All C. parvum isolates were subtyped as IIdA19G1, C. hominis as IkA16G1, and horse genotype as VIaA15G4. Data from this study indicate that four Cryptosporidium species are circulating in horses and donkeys in the study areas, with C. hominis as a dominant Cryptosporidium species in only donkeys. Attention should be paid to reduce the transmission of these zoonotic Cryptosporidium spp.


Assuntos
Cryptosporidium/isolamento & purificação , Equidae/parasitologia , Cavalos/parasitologia , Animais , Cryptosporidium/classificação , Cryptosporidium/genética , Genes de Protozoários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...