Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 11(3): 538-547, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35402178

RESUMO

Background: Long noncoding RNAs (lncRNAs) are emerging as key players in the development and progression of cancer. Several malignancies involve dysregulated long noncoding ribonucleic acids (lncRNAs) in non-small cell lung cancer cell growth and their aggressive phenotypes. LncRNA B4GALT1-AS1 is important in the advancement of various malignancies, although its contribution to non-small cell lung cancer (NSCLC) remains unexplored. Methods: LncRNA B4GALT1-AS1 in NSCLC tissues was detected and further validated in a cohort of non-small cell lung cancer tissues. The effects of lncRNA B4GALT1-AS1 on proliferation were determined by in vitro experiments. The B4GALT1-AS1-miR-144-3p-ZEB1 axis was assessed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Furthermore, the mechanism of B4GALT1-AS1 was investigated using loss-of-function assays in vitro. Results: We showed significant upregulation of B4GALT1-AS1 in cell lines and tissues of NSCLC. B4GALT1-AS1 knockdown impeded the in vitro proliferation-related characteristics of the NSCLC cells. The demonstration of the binding capacity of B4GALT1-AS1 and miR-144-3p was predicted by bioinformatics and luciferase reporter activity assay. The B4GALT1-AS1 and miR-144-3p interaction was shown by using rescue experiments. NSCLC has a positive association with its target, zinc finger e-box binding homeobox 1 (ZEB1). Conclusions: In summary, the progression of NSCLC was facilitated by lncRNA B4GALT1-AS1 via interaction with miR-144-3p and positive regulation of ZEB1 expression.

2.
Cancer Biomark ; 34(2): 297-307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34957997

RESUMO

Drug resistance is a critical factor responsible for the recurrence of non-small cell lung cancer (NSCLC). Previous studies suggest that curcumin acts as a chemosensitizer and radiosensitizer in human malignancies, but the underlying mechanism remains elusive. In the present study, we explored how curcumin regulates the expression of miR-142-5p and sensitizes NSCLC cells to crizotinib. We found that miR-142-5p is significantly downregulated in NSCLC tissue samples and cell lines. Curcumin could increase crizotinib cytotoxicity by epigenetically restoring the expression of miR-142-5p. Furthermore, curcumin treatment suppressed the expression of DNA methylation-related enzymes, including DNMT1, DNMT3A, and DNMT3B, in NSCLC cells. In addition, the upregulation of miR-142-5p expression increased crizotinib cytotoxicity and induced apoptosis in tumor cells in a similar manner to that of curcumin. Strikingly, miR-142-5p overexpression suppressed crizotinib-induced autophagy in A549 and H460 cells. Mechanistically, miR-142-5p inhibited autophagy in lung cancer cells by targeting Ulk1. Overexpression of Ulk1 abrogated the miR-142-5p-induced elevation of crizotinib cytotoxicity in A549 and H460 cells. Collectively, our findings demonstrate that curcumin sensitizes NSCLC cells to crizotinib by inactivating autophagy through the regulation of miR-142-5p and its target Ulk1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Curcumina , Neoplasias Pulmonares , MicroRNAs , Apoptose/genética , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Crizotinibe/uso terapêutico , Curcumina/farmacologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...