Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 42(5): 832-842, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33824461

RESUMO

Nanomedicine has attracted increasing attention and emerged as a safer and more effective modality in cancer treatment than conventional chemotherapy. In particular, the distinction of tumor microenvironment and normal tissues is often used in stimulus-responsive drug delivery systems for controlled release of therapeutic agents at target sites. In this study, we developed mesoporous silica nanoparticles (MSNs) coated with polyacrylic acid (PAA), and pH-sensitive lipid (PSL) for synergistic delivery and dual-pH-responsive sequential release of arsenic trioxide (ATO) and paclitaxel (PTX) (PL-PMSN-PTX/ATO). Tumor-targeting peptide F56 was used to modify MSNs, which conferred a target-specific delivery to cancer and endothelial cells under neoangiogenesis. PAA- and PSL-coated nanoparticles were characterized by TGA, TEM, FT-IR, and DLS. The drug-loaded nanoparticles displayed a dual-pH-responsive (pHe = 6.5, pHendo = 5.0) and sequential drug release profile. PTX within PSL was preferentially released at pH = 6.5, whereas ATO was mainly released at pH = 5.0. Drug-free carriers showed low cytotoxicity toward MCF-7 cells, but ATO and PTX co-delivered nanoparticles displayed a significant synergistic effect against MCF-7 cells, showing greater cell-cycle arrest in treated cells and more activation of apoptosis-related proteins than free drugs. Furthermore, the extracellular release of PTX caused an expansion of the interstitial space, allowing deeper penetration of the nanoparticles into the tumor mass through a tumor priming effect. As a result, FPL-PMSN-PTX/ATO exhibited improved in vivo circulation time, tumor-targeted delivery, and overall therapeutic efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Trióxido de Arsênio/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/uso terapêutico , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Trióxido de Arsênio/farmacocinética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Cetrimônio/química , Cetrimônio/toxicidade , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos Endogâmicos ICR , Nanopartículas/toxicidade , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Oligopeptídeos/toxicidade , Paclitaxel/química , Paclitaxel/farmacocinética , Porosidade , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Dióxido de Silício/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Zhongguo Zhong Yao Za Zhi ; 44(19): 4171-4178, 2019 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-31872695

RESUMO

In order to prepare angiopep-2 modified fluorescein isothiocyanate-labeled neurotoxin nanoparticles( ANG-NPs/FITCNT),emulsion/solvent evaporation method was used with m PEG-PLA and ANG-PEG-PLA( in proper proportions) as carriers and with FITC-NT as drug. With particle size and encapsulation efficiency as comprehensive indexes,the effects of different ultrasound power and ultrasound time combinations on the process were investigated. The in vitro release characteristics of nanoparticles in PBS buffer at p H 7. 4 and p H 6. 5 were investigated by dialysis method. The results indicated that the optimum process for preparing ANG-NPs/FITC-NT was as follows: ultrasonic power 90 W,ultrasonic time 30 s. In such optimal process,ANG-NPs/FITC-NT were well-shaped under the transmission electron microscope,with an average particle size of( 123. 9±0. 5) nm,Zeta potential of(-10. 5±0. 5) m V,encapsulation efficiency of( 68. 1±0. 4) %,and the drug loading of( 0. 82±0. 01) %. The in vitro drug release profiles of the nanoparticles in PBS buffer at p H 7. 4 and p H 6. 5 were both consistent with Ritger-Peppas equation,ln Q = 0. 508 8 lnt-2. 285 0,r = 0. 961 5( p H 7. 4) and ln Q= 0. 449 9 lnt-1. 855 3,r = 0. 970 3( p H 6. 5),respectively. The experiment results proved that the nanoparticles prepared by emulsion/solvent evaporation method had uniform particle size,high encapsulation efficiency and in vitro sustained release characteristic,which might be a potential carrier for NT intracerebral drug delivery.


Assuntos
Portadores de Fármacos , Nanopartículas , Peptídeos , Fluoresceína-5-Isotiocianato , Tamanho da Partícula , Polietilenoglicóis
3.
Drug Deliv ; 26(1): 393-403, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30929532

RESUMO

Our previous work indicates the lymphatic network and perivascular spaces or tissues might be involved in the facial intradermal brain-targeted delivery of Evans blue (EB). In this article, we presented the detailed involvement of both, and the linkage between lymphatic network and perivascular spaces or tissues. The in-vivo imaging, the trigeminal transection and immunohistochemistry were used. In-vivo imaging indicated intradermal injection in the mystacial pad (i.d.) delivered EB into the brain at 2-, 6- and 24 h, while intranasal injection (i.n.) delivered EB into the rostral head and intravenous injection (i.v.) diffused EB weakly into the brain. Trigeminal perineurial and epineurial EB occurred along the perivascular spaces or tissues and along brain vessels. EB diffused into the lymphatic vessels and submandibular lymph nodes. Moreover, perineurial and epineurial EB co-located or overlaid with Lyve1 immuno-reactivity and VEGF antibody, and lymphatic network connected with perivascular spaces or tissues, suggesting lymphatic system-perivascular spaces might involve in the EB delivery with i.d. The trigeminal transection reduced the trigeminal epineurial and perineurial EB and brain EB along vessels. EB diffused in the fasciculus and the perineurium, blood and lymphatic vessels in the mystacial pad, mystacial EB overlaid VEGF or Lyve1 antibody. In summary, the dermal-trigeminal-brain perivascular spaces or tissues and the linkage to the lymphatic network mediated the intradermal brain-targeted delivery.


Assuntos
Encéfalo/metabolismo , Corantes/administração & dosagem , Sistemas de Liberação de Medicamentos , Azul Evans/administração & dosagem , Administração Intranasal , Animais , Corantes/farmacocinética , Azul Evans/farmacocinética , Imuno-Histoquímica , Injeções Intradérmicas , Injeções Intravenosas , Linfonodos/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ratos Sprague-Dawley , Fatores de Tempo , Distribuição Tecidual , Nervo Trigêmeo/metabolismo
4.
Acta Pharmacol Sin ; 40(4): 539-545, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29921887

RESUMO

Tumor-targeted drug delivery systems (Tt-DDSs) are proposed as a promising strategy for cancer care. However, the dense collagen network in tumors stroma significantly reduces the penetration and efficacy of Tt-DDS. In order to investigate the effect of asiatic acid (AA) on antitumor effect of pegylated liposomal doxorubicin (PLD) by attenuating stroma-collagen, colon cancer xenograft mice (SW620 cell line) were treated by PLD, AA, or combined regimes, respectively; the collagen levels were estimated by Sirius red/fast green dual staining and immunohistochemistry (IHC) staining; the intratumor exposure of doxorubicin was visualized by ex vivo fluorescence imaging and quantified by HPLC/MS analysis. In addition, the impact of AA on collagen synthesis of fibroblast cell (HFL-1) and cytotoxic effect of PLD and doxorubicin to cancer cell (SW620) were studied in vitro. In the presence of AA (4 mg/kg), the intratumor collagen level was restricted in vivo (reduced by 22%, from 4.14% ± 0.30% to 3.24% ± 0.25%, P = 0.051) and in vitro. Subsequently, doxorubicin level was increased by ~30%. The antitumor activity of PLD was significantly improved (57.3% inhibition of tumor growth and 44% reduction in tumor weight) by AA combination. Additionally, no significant improvement in cytotoxic effect of PLD or doxorubicin induced by AA was observed. In conclusion, AA is a promising sensitizer for tumor treatment by enhancing intratumor drug exposure via stromal remodeling.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos , Triterpenos Pentacíclicos/farmacologia , Animais , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/análise , Colágeno/antagonistas & inibidores , Colágeno/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/química , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Imagem Óptica , Triterpenos Pentacíclicos/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Relação Estrutura-Atividade
5.
Zhongguo Zhong Yao Za Zhi ; 43(12): 2531-2536, 2018 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-29950071

RESUMO

In order to optimize the prescription and preparation process of norcantharidin/tetrandrine dual loaded liposomes, the dual drug loaded liposomes were prepared by film dispersion-ultrasonic method using norcantharidin-mesoporous silica nanoparticles(MSN-NCTD)and tetrandrine(Tet). With particle size and encapsulation efficiency as comprehensive indexes, the influences of phospholipid cholesterol amount, ultrasonic time and ultrasonic power on prescription process were investigated by orthogonal test; the in vitro release characteristics of liposomes were investigated by dialysis method. The results indicated that the best prescription process of prepared norcantharidin/tetrandrine dual loaded liposomes was as follows: phospholipid-cholesterol ratio 2.5:1, ultrasonic time 4 min, ultrasonic power 40%; the encapsulation efficiency was 86.62% and 79.19%respectively for NCTD and Tet;liposomes were well-shaped under the transmission microscope, with average particle size of (207.5±3.6) nm, Zeta potential of (1.345±0.173) mV; and the 48 h cumulative release rates of NCTD and Tet were 85.14% and 85.00% respectively. The experiment results proved that the dual drug loaded liposomes prepared by film dispersion-ultrasonic method had uniform particle size, high encapsulation efficiency and in vitro sustained release characteristics.


Assuntos
Benzilisoquinolinas/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Portadores de Fármacos/química , Lipossomos/química , Tamanho da Partícula
6.
Zhongguo Zhong Yao Za Zhi ; 43(8): 1618-1625, 2018 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29751708

RESUMO

Arsenic trioxide (ATO) is an effective component of traditional Chinese medicine arsenic. The existing studies have shown its good inhibition and apoptosis ability on a variety of tumours. However, its toxicity and difficulties in the permeability into the blood brain barrier (BBB) has the limitation in the application of glioma treatment. Polyamide-amine dendrimer (PAMAM) is a synthetic polymer with many advantages, such as a good permeability, stability and biocompatibility. Additionally, the 5th generation of PAMAM is an ideal drug carrier due to its three-dimensional structure. In this study, the 5th generation of PAMAM co-modified with RGDyC and PEG, then confirmed by ¹H-NMR. The average particle size of nanoparticles was about 20 nm according to the nanoparticle size-potential analyser and transmission electron microscopy. in vitro release showed that the nanocarrier not only has the sustained release effect, but also some pH-sensitive properties. The cell results showed that PAMAM co-modified with RGDyC and PEGAM has a lower cytotoxicity than the non-modified group in vitro. Accordingly, the drug delivery system has a better anti-tumour effect across the blood brain barrier (BBB) in vitro, which further proves the tumour targeting of RGDyC.


Assuntos
Glioma , Trióxido de Arsênio , Linhagem Celular Tumoral , Dendrímeros , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Polietilenoglicóis
7.
Int J Pharm ; 533(1): 266-274, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-28943208

RESUMO

Surfactants generally have been used as edge activators of transfersomes. However, surfactants edge activated transfersomes frequently lead to cutaneous irritation, skin lipid loss and other side effects after dermal administration. In this study, mixed monoterpenes edge activated PEGylated transfersomes (MMPTs) were prepared by ethanol injection process with sinomenine hydrochloride as a model drug. The formulation of MMPTs was optimized by an orthogonal design. We investigated skin permeation/deposition characteristics and pharmacokinetics of sinomenine hydrochloride loaded in MMPTs by comparing with liposomes using in vitro skin tests and in vivo cutaneous microdialysis. In in vitro study, the accumulative skin permeated quantity (ASPQ) and skin permeation rate (SPR) of simonenine (SIN) in the optimized MMPTs were prominently higher than that in the other MMPTs. The optimized MMPTs had a SIN ASPQ of over three times of SIN ASPQ in the liposomes and much larger SPR of SIN compared with the latter. In contrast, the drug deposition of the optimized MMPTs in the stratum corneum was much less than that of the conventional liposomes. It was noteworthy that the drug deposition curve in the whole skin (stratum corneum-stripped skin, either) for the optimized MMPTs increased initially and then decreased with an obvious peak deposition amount at 12h, while, a relatively steady curve was observed for the liposomes. In in vivo cutaneous pharmacokinetic study, the steady state concentration (Css) and the area under the curve (AUC0→t) of SIN from the optimized MMPTs was 8.7 and 8.2 folds higher than those from the liposomes, respectively. Moreover, the MRT0-inf of SIN from optimal MMPTs got shorter than that from the liposomes. It can be concluded that the optimized MMPTs obviously enhance the percutaneous absorption of sinomenine.


Assuntos
Sistemas de Liberação de Medicamentos , Monoterpenos/administração & dosagem , Morfinanos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Absorção Cutânea/efeitos dos fármacos , Administração Cutânea , Animais , Composição de Medicamentos , Masculino , Microdiálise , Monoterpenos/química , Monoterpenos/farmacocinética , Morfinanos/química , Morfinanos/farmacocinética , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Coelhos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/metabolismo , Testes de Irritação da Pele
8.
J Food Sci ; 82(4): 960-968, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28253439

RESUMO

Fermented soybean foods contain nutritional components including easily digestible peptides, cholesterol-free oils, minerals, and vitamins. Various fermented soybean foods have been developed and are consumed as flavoring condiments in Asian regions. While the quality of fermented soybean foods is largely affected by microorganisms that participate in the fermentation process, our knowledge about the microorganisms in soybean pastes manufactured in Northeast China is limited. The current study used a culture-independent barcoded pyrosequencing method targeting hypervariable V1/V2 regions of the 16S rRNA gene to evaluate Korean doenjang and soybean pastes prepared by the Hun Chinese (SPHC) and Korean minority (SPKM) populations in Northeast China. In total, 63399 high-quality sequences were derived from 16 soybean paste samples collected in Northeast China. Each bacterial species-level taxon of SPHC, SPKM, and Korean doenjang was clustered separately. Each paste contained representative bacterial species that could be distinguished from each other: Bacillus subtilis in SPKM, Tetragenococcus halophilus in SPHC, and Enterococcus durans in Korean doenjang. This is the 1st massive sequencing-based study analyzing microbial communities in soybean pastes manufactured in Northeast China, compared to Korean doenjang. Our results clearly showed that each soybean paste contained unique microbial communities that varied depending on the manufacturing process and location.


Assuntos
Biomassa , Sequenciamento de Nucleotídeos em Larga Escala , Alimentos de Soja/microbiologia , Bacillus subtilis/isolamento & purificação , China , DNA Bacteriano/genética , Enterococcaceae/isolamento & purificação , Enterococcus/isolamento & purificação , Fermentação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Glycine max/microbiologia
9.
Acta Pharmacol Sin ; 38(1): 100-109, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27840409

RESUMO

Most gefitinib-treated patients with non-small cell lung cancer (NSCLC) would eventually develop resistance. Lysimachia capillipes (LC) capilliposide extracts from LC Hemsl. show both in vitro and in vivo anti-cancer effects. In this study we investigated whether LC capilliposide in combination with gefitinib could overcome the resistance of NSCLC cells to gefitinib and identified the signaling pathways involved. Treatment with LC capilliposide alone inhibited the growth of a panel of NSCLC cell lines (PC-9, H460, H1975, H1299 and PC-9-GR) sensitive or resistant to gefitinib with IC50 values in the range of µg/mL. In the gefitinib-resistant PC-9-GR cells (which have a T790M EGFR mutation), LC capilliposide (at the IC30, i.e.1.2 µg/mL) markedly enhanced the inhibitory effects of gefitinib with its IC50 value being decreased from 6.80±1.00 to 0.77±0.12 µmol/L. By using the median effect analysis we showed that combination treatment of LC capilliposide and gefitinib could restore gefitinib sensitivity in PC-9-GR cells. Furthermore, LC capilliposide (1.2 µg/mL) significantly increased the apoptotic responses to gefitinib (0.77 µmol/L) in PC-9-GR cells, but did not affect gefitinib-induced G0/G1 arrest. Moreover, LC capilliposide (1.2 µg/mL) in combination with gefitinib (0.77, 1.0 µmol/L) markedly decreased the phosphorylation of the EGFR downstream signaling molecule AKT, which neither LC capilliposide nor gefitinib alone affected. In PC-9-GR cells with siRNA knockdown of AKT, addition of LC capilliposide was unable to increase gefitinib sensitivity. In a PC-9-GR xenograft mouse model, combination treatment with LC capilliposide (15 mg·kg-1·d-1, ip) and gefitinib (50 mg·kg-1·d-1, ip) dramatically enhanced tumor growth suppression (with a TGI of 109.3%), compared with TGIs of 22.6% and 56.6%, respectively, in mice were treated with LC capilliposide or gefitinib alone. LC capilliposide can restore the cells' sensitivity to gefitinib through modulation of pAKT levels, suggesting that a combination of LC capilliposide and gefitinib may be a promising therapeutic strategy to overcome gefitinib resistance in NSCLCs with a T790M mutation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Neoplasias Pulmonares/enzimologia , Primulaceae/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Quinazolinas/uso terapêutico , Saponinas/uso terapêutico , Triterpenos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Gefitinibe , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , RNA Interferente Pequeno/farmacologia , Saponinas/farmacologia , Triterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Yao Xue Xue Bao ; 50(7): 899-905, 2015 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-26552154

RESUMO

A novel targeting drug carrier (FA-BO-PAMAM) based on the PAMAM G5 dendrimer modified with borneol (BO) and folic acid (FA) molecules on the periphery and doxorubicin (DOX) loaded in the interior was designed and prepared to achieve the purposes of enhancing the blood-brain barrier (BBB) transportation and improving the drug accumulation in the glioma cells. 1H NMR was used to confirm the synthesis of FA-BO-PAMAM; its morphology and mean size were analyzed by dynamic light scattering (DLS) and transmission electron microscope (TEM). Based on the HBMEC and C6 cells, cytotoxicity assay, transport across the BBB, cellular uptake and anti-tumor activity in vitro were investigated to evaluate the properties of nanocarriers in vitro. The results showed that the nanocarrier of FA-BO-PAMAM was successfully synthesized, which was spherical in morphology with the average size of (22.28 ± 0.42) nm, and zeta potential of (7.6 ± 0.89) mV. Cytotoxicity and transport across the BBB assay showed that BO-modified conjugates decreased the cytotoxicity of PAMAM against both HBMEC and C6 cells and exhibited higher BBB transportation ability than BO-unmodified conjugates; moreover, modification with FA increased the total uptake of DOX by C6 cells and enhanced the cytotoxicity of DOX-polymer against C6 cells. Therefore, FA-BO-PAMAM is a promising nanodrug delivery system in employing PAMAM as a drug carrier and treatment for brain glioma.


Assuntos
Canfanos/química , Dendrímeros , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Ácido Fólico/química , Transporte Biológico , Barreira Hematoencefálica , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Glioma , Humanos
11.
Zhongguo Zhong Yao Za Zhi ; 39(7): 1238-42, 2014 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-25011261

RESUMO

Curcumin has a wide spectrum of pharmaceutical properties such as antitumor, antioxidant, antiamyloid, and anti-inflammatory activity. However, poor aqueous solubility and low bioavailability of curcumin are major challenge in its development as a useful drug. To overcome many of these problems, curcumin-loaded long-circulating liposomes (Cur-LCL) were prepared by the ethanol injection method. Morphology of Cur-LCL was observed by transmission electron microscope, mean particle size and Zeta potential were detected by laser particle size analyzer, entrapment efficiency and drug loading were evaluated by ultracentrifugation. The drug release behavior in vitro and pharmacokinetic behavior in rats of Cur-LCL were investigated with curcumin (Cur) and curcumin liposomes (Cur-Lips) as control. The results showed that the mean diameter of Cur-LCL was 110 nm, the Zeta potential was -5.8 mV. The entrapment efficiency and drug loading of Cur-LCL was 80.25%, 2.06%, respectively. The release behavior in vitro studied by dialysis in PBS buffer showed significant sustained release profile that 48.95% Cur were released from Cur-LCL in 7 h, 88.92% in 24 h. The pharmacokinetic parameters showed that compared with Cur and Cur-Lips, the t(1/2beta) of Cur-LCL was extended to 13 and 1.8-fold, respectively. Besides, the AUC values was significantly increased (P < 0.01), and the clearance was evidently decreased (P < 0.01). These results from in vitro and in vivo indicated that Cur-LCL were able to realize controlled drug release and increase circulation time.


Assuntos
Curcumina/química , Curcumina/farmacocinética , Preparações de Ação Retardada/farmacocinética , Lipossomos/química , Animais , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Feminino , Humanos , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Solubilidade
12.
Zhongguo Zhong Yao Za Zhi ; 38(14): 2384-8, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24199577

RESUMO

The purpose of this study was to investigate the absorption kinetics of aconitine, mesaconitine and hypaconitine in rats after oral administration of Sini Tang powder. With cannulate portal and jugular veins cannulated (double-cannulate), conscious moving rats were orally administered Sini Tang. Then samples of portal and systemic blood were collected at the designated periods of time and analyzed for aconitine, mesaconitine and hypaconitine by HPLC. Apparent absorption coefficient of aconitine, mesaconitine and hypaconitine was caculated respectively. The results indicated that the apparent absorption coefficient of aconitine, mesaconitine and hypaconitine come from Sini Tang were 0. 336, 0. 090, 0. 176, respectively, which had some differences among them. It was also suggested that double-cannulated rat was useful for estimating the absorption kinetics of aconitine, mesaconitine and hypaconitine after orally administered Sini Tang by determining the AUC values for drugs in portal and systemic blood samples. The three alkaloids could all be detected in blood, but the absorption differences were existed among the three alkaloids.


Assuntos
Alcaloides/farmacocinética , Diterpenos/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Absorção , Administração Oral , Alcaloides/administração & dosagem , Alcaloides/sangue , Animais , Área Sob a Curva , Diterpenos/sangue , Medicamentos de Ervas Chinesas/administração & dosagem , Feminino , Cinética , Masculino , Pós/farmacocinética , Ratos , Ratos Sprague-Dawley
13.
Zhongguo Zhong Yao Za Zhi ; 38(4): 548-52, 2013 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-23713281

RESUMO

OBJECTIVE: To prepare chitosan-modified tripterygium glycoside nanoparticles (LMWC-TG-PLA-NPs), and assess its renal targeting property in rats. METHOD: Chitosan-modified tripterygium glycoside nanoparticles (LMWC-TG-PLA-NPs) were prepared by modified spontaneous emulsification solvent evaporation method, and modified with 50% deacetylated low molecular weight chitosan (LMWC). The shape of nanoparticles was observed under a transmission electron microscope. The mean diameter of nanoparticles was measured by particle size analyzer. The drug encapsulation efficiency and drug loading were measured by centrifuge method. The in vitro release behavior was studied with dialysis bags. Renal microdialysis technique and renal artery administration technique were combined to study the renal targeting property of nanopartcles. LMWC-TG-PLA-NPs were administrated in rats by tail vein injection (TVI) and renal artery administration (RAA), respectively, with TG-PLA-NPs as the control group. Renal dialysis fluid was regularly collected to determine the drug concentration in the dialysis fluid, map drug concentration-time curves, and calculate AUC ratio in kidneys through the two injection approaches as the renal targeting parameter (RTP), in order to assess the renal targeting property of LMWC-TG-PLA-NPs. RESULTS: The prepared LMWC-TG-PLA-NPs looked smooth and round. Their average diameter, polydispersity index, encapsulation efficiency and drug loading were (207.6 +/- 3.4) nm, (0.078 +/- 0.009)%, (61.83 +/- 2.43)%, and (10.70 +/- 0.37)%, respectively. The pH 7.4 PBS buffer solution containing 20% ethanol showed obvious sustained release behavior. LMWC-TG-PLA-NPs showed a RTP of 71.97%, which was 3.6 times of TG-PLA-NPs of the control group. CONCLUSION: The prepared LMWC-TG-PLA-NPs showed high drug encapsulation efficiency and drug loading, with obvious sustained release characteristics and renal targeting property. LMWC-TG-PLA-NPs are expected to become a new type vector for reducing toxic and side effects of tripterygium glycoside. Meanwhile, a new method is established for assessing renal targeting property with AUC ratio in kidneys after administrated through caudal veins and renal arteries as the renal targeting parameter.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Glicosídeos/química , Glicosídeos/metabolismo , Rim/metabolismo , Nanopartículas/química , Tripterygium/química , Animais , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Diálise Renal
14.
Biomaterials ; 34(22): 5628-39, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23628475

RESUMO

Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy.


Assuntos
Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Doxorrubicina/farmacologia , Doxorrubicina/toxicidade , Ácido Fólico/metabolismo , Glioma/patologia , Humanos , Lipossomos , Masculino , Camundongos , Permeabilidade/efeitos dos fármacos , Fosfatidiletanolaminas/síntese química , Fosfatidiletanolaminas/química , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Ratos , Ratos Wistar , Análise de Sobrevida , Transferrina/metabolismo
15.
Int J Pharm ; 444(1-2): 1-9, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23347891

RESUMO

Methods on how to improve the sequential targeting of glioma subsequent to passing of drug through the blood-brain barrier (BBB) have been occasionally reported. However, the characteristics involved are poorly understood. In the present study, cisplatin (Cis) liposome (lipo) was modified with transferrin (Tf) to investigate the characteristics of potential sequential targeting to glioma. In bEnd3/C6 co-culture BBB models, higher transport efficiency across the BBB and cytotoxicity in basal C6 cells induced by Cis-lipo(Tf) than Cis-lipo and Cis-solution, suggest its sequential targeting effect. Interestingly, similar liposomal morphology as that of donor compartment was first demonstrated in the receptor solution of BBB models. Meanwhile, a greater acquisition in the lysosome of bEnd3, distributed sequentially into the nucleus of C6 cells were found for the Cis-lipo(Tf). Pre-incubation of chlorpromazine and Tf inhibited this process, indicating that a clathrin-dependent endocytosis is involved in the transport of Cis-lipo(Tf) across the BBB.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Cisplatino/administração & dosagem , Glioma/tratamento farmacológico , Transferrina/administração & dosagem , Animais , Antineoplásicos/química , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Glioma/metabolismo , Lipossomos , Camundongos , Transferrina/química
16.
J Control Release ; 163(2): 136-44, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22940126

RESUMO

Drug resistance is one of the critical reasons leading to failure in chemotherapy. Enormous studies have been focused on increasing intracellular drug accumulation through inhibiting P-glycoprotein (Pgp). Meanwhile, we found that major vault protein (MVP) may be also involved in drug resistance of human breast cancer MCF-7/ADR cells by transporting doxorubicin (DOX) from the action target (i.e. nucleus) to cytoplasma. Herein polyamidoamine (PAMAM) dendrimers was functionalized by a polysaccharide hyaluronic acid (HA) to effectively deliver DOX as well as MVP targeted small-interfering RNA (MVP-siRNA) to down regulate MVP expression and improve DOX chemotherapy in MCF-7/ADR cells. In comparison with DOX solution (IC50=48.5 µM), an enhanced cytotoxicity could be observed for DOX PAMAM-HA (IC50=11.3 µM) as well as enhanced tumor target, higher intracellular accumulation, increased blood circulating time and less in vivo toxicity. Furthermore, codelivery of siRNA and DOX by PAMAM-HA exhibited satisfactory gene silencing effect as well as enhanced stability and efficient intracellular delivery of siRNA, which allowed DOX access to nucleus and induced subsequent much more cytotoxicity than siRNA absent case as a result of MVP knockdown. This observation highlights a promising application of novel nanocarrier PAMAM-HA, which could co-deliver anticancer drug and siRNA, in reversing drug resistance by altering intracellular drug distribution.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , RNA Interferente Pequeno/administração & dosagem , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética , Animais , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular , Dendrímeros/química , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Ácido Hialurônico/química , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno/química , Ratos , Ratos Sprague-Dawley
17.
Int J Nanomedicine ; 5: 1057-65, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21170353

RESUMO

Due to their small particle size and large and modifiable surface, nanoparticles have unique advantages compared with other drug carriers. As a research focus in recent years, polyethylene glycol-polylactic acid (PEG-PLA) block copolymer and its end-group derivative nanoparticles can enhance the drug loading of hydrophobic drugs, reduce the burst effect, avoid being engulfed by phagocytes, increase the circulation time of drugs in blood, and improve bioavailability. Additionally, due to their smaller particle size and modified surface, these nanoparticles can accumulate in inflammation or target locations to enhance drug efficacy and reduce toxicity. Recent advances in PEG-PLA block copolymer nanoparticles, including the synthesis of PEG-PLA and the preparation of PEG-PLA nanoparticles, were introduced in this study, in particular the drug release and modifiable characteristics of PEG-PLA nanoparticles and their application in pharmaceutical preparations.


Assuntos
Nanopartículas/administração & dosagem , Nanopartículas/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Animais , Sistemas de Liberação de Medicamentos , Humanos
18.
Yao Xue Xue Bao ; 45(10): 1312-6, 2010 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-21348312

RESUMO

This study was aimed at the transport across blood-brain barrier (BBB) of polysorbate-80 modified neurotoxin loaded polybutylcyanoacrylate nanoparticle (P-80-NT-NP) and its cytotoxicity. An in vitro model of BBB using rat brain microvascular endothelial cells (rBMECs) was established. The cytotoxicity of P-80-NT-NP was measured by the MTT assays, where neurotoxin (NT), nanoparticle (NP), neurotoxin nanoparticle (NT-NP) as control, and the permeability of P-80-NT-NP was determined by using of Millicell insert coculture with rBMECs and fluorescence spectrophotometry. MTT results showed that NT, NP, NT-NP and P-80-NT-NP were avirulent to rBMECs when the concentration of NT was lower than 200 ng x mL(-1). But the cytotoxicity of NP, NT-NP and P-80-NT-NP would be augmented accordingly as concentration increased (P < 0.01), causing obvious reductions of cell survival rate, with no significant difference between them (P > 0.05). When the concentration of NT was 150 ng x mL(-1), the permeability on rBMECs of P-80-NT-NP and NT-NP were both significantly higher than that of NT (P < 0.01), and the permeability of P-80-NT-NP was greater than that of NT-NP (P < 0.05). In conclusion, polysorbate-80 modified neurotoxin nanoparticles can transport across the BBB, while concentration of NT is greater than 200 ng x mL(-1), P-80-NT-NP has a little cytotoxicity against rBMECs.


Assuntos
Barreira Hematoencefálica , Células Endoteliais/citologia , Neurotoxinas/administração & dosagem , Neurotoxinas/farmacocinética , Polissorbatos/química , Animais , Transporte Biológico , Encéfalo/irrigação sanguínea , Permeabilidade Capilar , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos , Impedância Elétrica , Embucrilato/química , Embucrilato/toxicidade , Células Endoteliais/metabolismo , Feminino , Masculino , Nanopartículas , Tamanho da Partícula , Polissorbatos/toxicidade , Ratos , Ratos Sprague-Dawley
19.
Yao Xue Xue Bao ; 45(8): 1043-7, 2010 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-21351593

RESUMO

The mesaconitine and its major metabolites in the rat urine were identified by liquid chromatography and electrospray ionization tandem mass spectrometry. The rat urine was collected for consecutive 24 hours from the rat following intragastric infusion of mesaconitine, subsequently which were enriched and purified using solid phase extraction. The metabolites of mesaconitine in the rat urine were analyzed by the liquid chromatography and electrospray ionization tandem mass spectrometry. It is shown that the parent drug mesaconitine and its metabolites were found in the rat urine, such as hypo-mesaconitine glucuronic acid conjugate, 10-hydroxy-mesaconitine, 1-O-demethyl mesaconitine, deoxy-mesaconitine and hypo-mesaconitine. Among the five of metabolites, the hypo-mesaconitine glucuronic acid conjugate (m/z 766) was first discovered as the aconitine in rats phase II metabolites, which revealed a new way of mesaconitine metabolism in rats.


Assuntos
Aconitina/análogos & derivados , Aconitum/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização por Electrospray , Aconitina/isolamento & purificação , Aconitina/metabolismo , Aconitina/urina , Animais , Feminino , Masculino , Estrutura Molecular , Plantas Medicinais/química , Ratos , Ratos Sprague-Dawley , Extração em Fase Sólida
20.
Yao Xue Xue Bao ; 43(4): 431-4, 2008 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-18664209

RESUMO

The purpose of this paper is to encapsulate neurotoxin-I (NT-I), a kind of analgesic peptide, into polylactic acid (PLA) nanoparticles (NPs) and to evaluate their transport into the brain after intranasal administration (in) by use of microdialysis sampling technique developed in our laboratory recently. NT-I-NPs (NT-Iradiolabeled with sodium 125I-Iodide) were prepared by a double emulsification solvent evaporation method, and were characterized in terms of surface morphology, particle size distribution, zeta potential and entrapment efficiency. Then, NT-I-NPs were administered intranasally or intravenously to rats and the radioactivities in periaqueductal gray (PAG) were monitored up to 240 min utilizing the microdialysis sampling technique. Nanoparticles prepared were spherical with homogenous size distribution. Their mean particle size and zeta potential measured were (65.3 +/- 10.8) nm and (-28.6 +/- 2.3) mV, respectively. The entrapment efficiency of NT-Iencapsulated into nanoparticles was (35.5 +/- 2.8)%. The brain transport results showed that the time to peak level (Tmax) of NT-I-NPs (in) was (65 +/- 10) min approximately, apparently shorter compared with NT-I-NPs [iv, (95 +/- 10) min] or NT-I [iv, (145 +/- 10) min]. The concentration to peak level (Cmax) and the area under the curves from zero to 4 h (AUC0-4h) of each group followed this order: NT-I-NPs (in) > NT-I-NPs (iv) > NT-I (iv). With nanoparticles as carriers and administered intranasally could be a potential way for centrally active peptides to improve their brain transport. Microdialysis is quite a good technique for the study of drug delivery to the brain.


Assuntos
Proteínas Neurotóxicas de Elapídeos/administração & dosagem , Proteínas Neurotóxicas de Elapídeos/farmacocinética , Sistemas de Liberação de Medicamentos , Ácido Láctico/química , Substância Cinzenta Periaquedutal/metabolismo , Polímeros/química , Administração Intranasal , Animais , Área Sob a Curva , Masculino , Microdiálise , Nanopartículas , Tamanho da Partícula , Poliésteres , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...