Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.275
Filtrar
1.
Biochem Biophys Res Commun ; 737: 150500, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39142135

RESUMO

Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a vital role in regulating redox homeostasis and reductive biosynthesis. However, if exogenous NADPH can be transported across the plasma membrane has remained elusive. In this study, we present evidence supporting that NADPH can traverse the plasma membranes of cells through a mechanism mediated by the P2X7 receptor (P2X7R). Notably, we observed an augmentation of intracellular NADPH levels in cultured microglia upon exogenous NADPH supplementation in the presence of ATP. The P2X7R-mediated transmembrane transportation of NADPH was validated with P2X7R antagonists, including OX-ATP, BBG, and A-438079, or through P2X7 knockdown, which impeded NADPH transportation into cells. Conversely, overexpression of P2X7 resulted in an enhanced capacity for NADPH transport. Furthermore, transfection of hP2X7 demonstrated the ability to complement NADPH uptake in native HEK293 cells. Our findings provide evidence for the first time that NADPH is transported across the plasma membrane via a P2X7R-mediated pathway. Additionally, we propose an innovative avenue for modulating intracellular NADPH levels. This discovery holds promise for advancing our understanding of the role of NADPH in redox homeostasis and neuroinflammation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39152816

RESUMO

Background Nail unit squamous cell carcinoma (nSCC) is a malignant subungual tumour. Although it has a low risk of metastasis and mortality, the tumour has a significant local recurrence rate. There is insufficient data to determine whether functional surgery is less effective than amputation for nSCC that does not involve the bone. Objectives We aimed to investigate existing data on the outcomes of functional surgery and amputation for nSCC without bone invasion. Materials and Methods We carried out an extensive search in PubMed, Embase, Cochrane Library, Web of Science, and Scopus for appropriate English-language academic papers, starting with the creation of individual resources until February 23, 2023. The main outcome was local recurrence. Initially, 2191 studies related to nSCC were selected. Information from every research study was retrieved and subdivided, comprising the year of publication, period, number of patients, age, gender distribution, tumour stage, type of intervention, number of recurrences, and follow-up period. Results Ten independent studies (319 lesions) were finally selected. Mohs micrographic surgery was the most reported surgical modality, followed by wide surgical excision and amputation. Local recurrence rates between Mohs micrographic surgery, wide surgical excision and amputation treatment were nearly identical. Other surgical methods included limited surgical excision, partial ablation, and limited excision until the clearing of margins, with recurrence rates up to 50%. Conclusions Given the functional impairment and psychological distress associated with phalanx amputation, functional surgery, including Mohs micrographic surgery and wide surgical excision , should be the preferred therapy for nSCC without bone involvement. Amputation should remain the preferred therapy for nSCC that involves the bone. Partial excision should be avoided. Further studies on whether Mohs micrographic surgery or wide surgical excision is a better option for nSCC not involving the bone are required.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39153114

RESUMO

PURPOSE: This meta-analysis aimed to evaluate the efficacy and safety of non-vitamin K antagonist oral anticoagulants (NOACs) compared with vitamin K antagonists (VKAs) in patients with atrial fibrillation (AF) and type 2 valvular heart disease (VHD). METHODS: We searched the PubMed, LILACS, and MEDLINE databases to retrieve, randomized controlled trials (RCTs) comparing NOACs and VKAs in patients with AF and type 2 VHD, excluding mitral stenosis (moderate to severe, of rheumatic origin) or mechanical heart valves. The efficacy outcomes assessed were stroke and systemic embolism (SE), while safety outcomes included major bleeding and intracranial hemorrhage (ICH). RESULTS: Seven RCTs, including 16,070 patients with AF and type 2 VHD, were included. NOACs reduced the risk of stroke/SE (relative risk [RR], 0.75; 95% confidence interval [CI], 0.64-0.89; P = 0.0005), with no significant difference in major bleeding (RR, 0.88; 95% CI, 0.64-1.21; P = 0.43). The risk of ICH was reduced with NOACs (RR, 0.46; 95% CI, 0.27-0.77; P = 0.003). For patients with AF and bioprosthetic heart valve (five trials, 2805 patients), stroke/SE risks (RR, 0.65, 95% CI, 0.44-0.96) with NOACs were superior to VKAs. Major bleeding risks without ENVISAGE TAVI AF trial (RR, 0.53; 95% CI, 0.30-0.94; P = 0.03) with NOACs were superior to VKAs. The risks of ICH (RR, 0.61; 95% CI 0.34-1.09; P = 0.09) with NOACs were comparable to VKAs. CONCLUSIONS: NOACs demonstrate efficacy and safety in patients with AF and type 2 VHD and reduce the risk of stroke/SE and ICH when compared with those with VKAs.

4.
ChemMedChem ; : e202400324, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108039

RESUMO

The liposomal systems proved remarkably useful for the delivery of genetic materials but enhancing their efficacy remains a significant challenge. While structural alterations could result in the discovery of more effective transfecting lipids, improving the efficacy of widely used lipid carriers is also crucial in order to compete with viral vectors for gene delivery. Herein, we developed formulations of commercially available lipid, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) with synthetic cationic lipids containing amino acids,  cystine (CTT) or arginine (AT) in the head group. These lipids were used to formulate with different co-lipid compositions and were broadly categorised into two types: amino acid-based liposomes without DOTAP (CTTD and ATD) and those with DOTAP (DtATD and DtCTTD). Optimized lipid-DNA complexes of DOTAP-incorporated formulations (DtATD and DtCTTD) exhibited enhanced efficacy in transfection compared to formulations lacking DOTAP as well as commercial formulations such as DOTAP:DOPE. Notably, DtCTTD displayed superior transfection capabilities in prostate cancer (PC3) and lung cancer (A549) cell lines when compared to the widely used commercial transfection reagent, Lipofectamine. Collectively, the findings from this study suggest that DOTAP-incorporated formulations derived from amino acid-based liposomes, hold promise as effective tools for improving transfection efficacy with reduced toxicity, offering potential advancements in gene delivery applications.

5.
J Biomed Semantics ; 15(1): 14, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39123237

RESUMO

BACKGROUND: Vaccines have revolutionized public health by providing protection against infectious diseases. They stimulate the immune system and generate memory cells to defend against targeted diseases. Clinical trials evaluate vaccine performance, including dosage, administration routes, and potential side effects. CLINICALTRIALS: gov is a valuable repository of clinical trial information, but the vaccine data in them lacks standardization, leading to challenges in automatic concept mapping, vaccine-related knowledge development, evidence-based decision-making, and vaccine surveillance. RESULTS: In this study, we developed a cascaded framework that capitalized on multiple domain knowledge sources, including clinical trials, the Unified Medical Language System (UMLS), and the Vaccine Ontology (VO), to enhance the performance of domain-specific language models for automated mapping of VO from clinical trials. The Vaccine Ontology (VO) is a community-based ontology that was developed to promote vaccine data standardization, integration, and computer-assisted reasoning. Our methodology involved extracting and annotating data from various sources. We then performed pre-training on the PubMedBERT model, leading to the development of CTPubMedBERT. Subsequently, we enhanced CTPubMedBERT by incorporating SAPBERT, which was pretrained using the UMLS, resulting in CTPubMedBERT + SAPBERT. Further refinement was accomplished through fine-tuning using the Vaccine Ontology corpus and vaccine data from clinical trials, yielding the CTPubMedBERT + SAPBERT + VO model. Finally, we utilized a collection of pre-trained models, along with the weighted rule-based ensemble approach, to normalize the vaccine corpus and improve the accuracy of the process. The ranking process in concept normalization involves prioritizing and ordering potential concepts to identify the most suitable match for a given context. We conducted a ranking of the Top 10 concepts, and our experimental results demonstrate that our proposed cascaded framework consistently outperformed existing effective baselines on vaccine mapping, achieving 71.8% on top 1 candidate's accuracy and 90.0% on top 10 candidate's accuracy. CONCLUSION: This study provides a detailed insight into a cascaded framework of fine-tuned domain-specific language models improving mapping of VO from clinical trials. By effectively leveraging domain-specific information and applying weighted rule-based ensembles of different pre-trained BERT models, our framework can significantly enhance the mapping of VO from clinical trials.


Assuntos
Ontologias Biológicas , Ensaios Clínicos como Assunto , Vacinas , Vacinas/imunologia , Humanos , Processamento de Linguagem Natural , Unified Medical Language System
6.
Cancer Res ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088832

RESUMO

Radiotherapy (RT) is commonly used to try to eliminate any remaining tumor cells following surgical resection of glioma. However, tumor recurrence is prevalent, highlighting the unmet medical need to develop therapeutic strategies to enhance the efficacy of RT in glioma. Focusing on the radiosensitizing potential of currently approved drugs known to cross the blood-brain barrier can facilitate rapid clinical translation. Here, we assessed the role of catechol-o-methyltransferase (COMT), a key enzyme to degrade catecholamines and a drug target for Parkinson's disease, in glioma treatment. Analysis of TCGA data showed significantly higher COMT expression levels in both low-grade glioma and glioblastoma compared to normal brain tissues. Inhibition of COMT by genetic knockout or FDA-approved COMT inhibitors significantly sensitized glioma cells to RT in vitro and in vivo. Mechanistically, COMT inhibition in glioma cells led to mitochondria dysfunction and increased mitochondrial RNA release into the cytoplasm, activating the cellular antiviral double-stranded RNA sensing pathway and type I interferon (IFN) response. Elevated type I IFNs stimulated the phagocytic capacity of microglial cells, enhancing RT efficacy. Given the long-established safety record of the COMT inhibitors, these findings provide a solid rationale to evaluate them in combination with RT in glioma patients.

7.
Sci Rep ; 14(1): 18154, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103544

RESUMO

Sodium is crucial for maintaining cardiovascular health, especially in relation to heart failure. The impact of baseline serum sodium concentrations on the outcomes of newly diagnosed coronary heart disease (CHD) without heart failure remains unclear. This prospective cohort study included 681 patients who were newly diagnosed with CHD. Cox proportional hazards models and restricted cubic spline (RCS) analysis were used to assess the relationship between serum sodium concentrations and major adverse cardiovascular events. The improvement in traditional prediction models by the addition of serum sodium concentrations was assessed using changes in the C-statistic, net reclassification improvement (NRI), and integrated discrimination improvement (IDI). During a median follow-up of 51.04 months (IQR: 40.88-53.80 months), 131 events were recorded. Multivariate Cox proportional hazards models showed that the L2 group (136-138.9 mmol/L) had the highest MACE risk. Compared to L2, the hazard ratios (HRs) and 95% confidence intervals (CIs) for the L1 (130-135.9 mmol/L), L3 (139-140.9 mmol/L), L4 (141-142.9 mmol/L), and L5 (143-147.0 mmol/L) groups were 0.31 (0.14-0.70, P = 0.005), 0.48 (030-0.78, P = 0.003), 0.56 (0.34-0.92, P = 0.022), and 0.37 (0.22-0.64, P < 0.001), respectively. Including serum sodium concentrations in the prediction model significantly improved the C-statistic from 0.647 to 0.679 (P = 0.022), with an NRI of 0.338 (P < 0.001) and an IDI of 0.026 (P < 0.001). RCS analysis showed a nonlinear relationship: within the 130-138 mmol/L sodium range, MACE risk gradually increased with higher sodium levels (HR 1.39, 95% CI 1.09-1.76, P = 0.008); whereas within the 138-147 mmol/L range, the risk gradually decreased (HR 0.88, 95% CI 0.80-0.98, P = 0.014). Baseline serum sodium concentrations are significantly associated with long-term cardiovascular risk in newly diagnosed CHD patients, showing an inverted U-shaped relationship, whereas low serum sodium may be specifically linked to higher risks of death and nonfatal myocardial infarction. Further research is needed to explore the impact of long-term changes in serum sodium concentrations on disease prognosis.


Assuntos
Doença das Coronárias , Sódio , Humanos , Sódio/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Doença das Coronárias/sangue , Doença das Coronárias/diagnóstico , Idoso , Insuficiência Cardíaca/sangue , Modelos de Riscos Proporcionais , Prognóstico , Fatores de Risco , Seguimentos
8.
Phytother Res ; 38(8): 4151-4167, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39136618

RESUMO

Despite active clinical trials on the use of Oleandrin alone or in combination with other drugs for the treatment of solid tumors, the potential synergistic effect of Oleandrin with radiotherapy remains unknown. This study reveals a new mechanism by which Oleandrin targets ATM and ATR kinase-mediated radiosensitization in lung cancer. Various assays, including clonogenic, Comet, immunofluorescence staining, apoptosis and Cell cycle assays, were conducted to evaluate the impact of oleandrin on radiation-induced double-strand break repair and cell cycle distribution. Western blot analysis was utilized to investigate alterations in signal transduction pathways related to double-strand break repair. The efficacy and toxicity of the combined therapy were assessed in a preclinical xenotransplantation model. Functionally, Oleandrin weakens the DNA damage repair ability and enhances the radiation sensitivity of lung cells. Mechanistically, Oleandrin inhibits ATM and ATR kinase activities, blocking the transmission of ATM-CHK2 and ATR-CHK1 cell cycle checkpoint signaling axes. This accelerates the passage of tumor cells through the G2 phase after radiotherapy, substantially facilitating the rapid entry of large numbers of inadequately repaired cells into mitosis and ultimately triggering mitotic catastrophe. The combined treatment of Oleandrin and radiotherapy demonstrated superior inhibition of tumor proliferation compared to either treatment alone. Our findings highlight Oleandrin as a novel and effective inhibitor of ATM and ATR kinase, offering new possibilities for the development of clinical radiosensitizing adjuvants.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Cardenolídeos , Dano ao DNA , Neoplasias Pulmonares , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Animais , Cardenolídeos/farmacologia , Dano ao DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Tolerância a Radiação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Reparo do DNA/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células A549
9.
Small ; : e2401398, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101277

RESUMO

Macrophage engineering has emerged as a promising approach for modulating the anti-tumor immune response in cancer therapy. However, the spatiotemporal control and real-time feedback of macrophage regulatory process is still challenging, leading to off-targeting effect and delayed efficacy monitoring therefore raising risk of immune overactivation and serious side effects. Herein, a focused ultrasound responsive immunomodulator-loaded optical nanoplatform (FUSION) is designed to achieve spatiotemporal control and status reporting of macrophage engineering in vivo. Under the stimulation of focused ultrasound (FUS), the immune agonist encapsulated in FUSION can be released to induce selective macrophage M1 phenotype differentiation at tumor site and the near-infrared mechanoluminescence of FUSION is generated simultaneously to indicate the initiation of immune activation. Meanwhile, the persistent luminescence of FUSION is enhanced due to hydroxyl radical generation in the pro-inflammatory M1 macrophages, which can report the effectiveness of macrophage regulation. Then, macrophages labeled with FUSION as a living immunotherapeutic agent (FUSION-M) are utilized for tumor targeting and focused ultrasound activated, immune cell-based cancer therapy. By combining the on-demand activation and feedback to form a closed loop, the nanoplatform in this work holds promise in advancing the controllability of macrophage engineering and cancer immunotherapy for precision medicine.

10.
Cell Commun Signal ; 22(1): 393, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118129

RESUMO

BACKGROUND: Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS: An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS: Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS: This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.


Assuntos
Traumatismo por Reperfusão , Trocador 1 de Sódio-Hidrogênio , Humanos , Animais , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 1 de Sódio-Hidrogênio/genética , Fosforilação , Concentração de Íons de Hidrogênio , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Camundongos , Masculino , Precondicionamento Isquêmico , Linhagem Celular , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Ácidos/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio/metabolismo
11.
Open Life Sci ; 19(1): 20220928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119479

RESUMO

The incidence rate of gestational diabetes mellitus (GDM) remains high among pregnant women in the second trimester of pregnancy. However, the main clinical approach to alleviate the symptoms of GDM is to control the diet. Our study explored the therapeutic effects of omega-3 fatty acids (ω-3 FAs) on GDM at the cellular and animal levels. We found that ω-3 FAs can promote the transformation of M0 macrophages into anti-inflammatory M2 macrophages. The transformed M2 macrophages promoted ß-oxidation and reduced hepatocyte lipid synthesis (P < 0.05), thereby promoting hepatic function and preventing the excessive accumulation of lipid droplets in the hepatocyte cell line HepG2. Supplementation of ω-3 FAs in pregnant GDM mice significantly reduced fasting blood glucose levels, glucose tolerance test, and insulin tolerance test indices, and lipid accumulation in the liver and effectively prevented the occurrence of liver fibrosis (P < 0.05). These therapeutic effects may be mediated through the anti-inflammatory effects of ω-3 FAs (P < 0.05). ω-3 FAs also had positive effects on the offspring of pregnant GDM mice, as demonstrated by reduced birth mortality and improved glycemic stabilization (P < 0.05). In conclusion, this study provides a possible translational medicine strategy for the treatment of GDM.

12.
Exp Eye Res ; : 110023, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127234

RESUMO

We examined the lipid profiles in the aqueous humor (AH) of myopic patients to identify differences and investigate the relationships among dissertating lipids. Additionally, we assessed spherical equivalents and axial lengths to explore the pathogenesis of myopia. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was employed to qualitatively and quantitatively analyze the lipid composition of samples from myopic patients with axial lengths <26 mm (Group A) and >28 mm (Group B). Differences in lipid profiles between the two groups were determined using univariate and multivariate analyses. Receiver operator characteristic (ROC) curves were used to identify discriminating lipids. Spearman correlation analysis explored the associations between lipid concentrations and biometric parameters. Three hundred and nine lipids across 21 lipid classes have been identified in this study. Five lipids showed significant differences between Group B and Group A (VIP > 1, P < 0.05): BMP (20:3/22:3), PG (22:1/24:0), PS (14:1/22:4), TG (44:2)_FA18:2, and TG (55:3)_FA18:1. The area under the curve (AUC) for these lipids was >0.75. Notably, the concentrations of BMP (20:3/22:3), PS (14:1/22:4), and TG (55:3)_FA18:1 were correlated with spherical equivalents, while BMP (20:3/22:3) and PS (14:1/22:4) correlated with axial lengths. Our study identified five differential lipids in myopic patients, with three showing significant correlations with the degree of myopia. These findings enhance our understanding of myopia pathogenesis through lipidomic alterations, emphasizing changes in cell membrane composition and function, energy metabolism and storage, and pathways involving inflammation, peroxisome proliferator-activated receptors (PPAR), and metabolic processes related to phosphatidylserine, phosphatidylglycerol, triglycerides, polyunsaturated fatty acids, and cholesterol.

13.
Small ; : e2404932, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39165075

RESUMO

The practical application of aqueous zinc (Zn) metal batteries (ZMBs) is hindered by the complicated hydrogen evolution, passivation reactions, and dendrite growth of Zn metal anodes. Here, an ion-pumping quasi-solid electrolyte (IPQSE) with high Zn2+ transport kinetics enabled by the electrokinetic phenomena to realize high-performance quasi-solid state Zn metal batteries (QSSZMBs) is reported. The IPQSE is prepared through the in situ ring-opening polymerization of tetramethylolmethane-tri-ß-aziridinylpropionate in the aqueous electrolyte. The porous polymer framework with high zeta potential provides the IPQSE with an electrokinetic ion-pumping feature enabled by the electrokinetic effects (electro-osmosis and electrokinetic surface conduction), which significantly accelerates the Zn2+ transport, reduces the concentration polarization and overcomes the diffusion-limited current. Moreover, the Zn2+ affinity of the polymer and hydrogen bonding interactions in the IPQSE changes the Zn2+ coordination environment and reduces the amount of free H2O, which lowers the H2O activity and inhibits H2O-induced side reactions. Consequently, the highly reversible and stable Zn metal anodes are achieved. The assembled QSSZMBs based on the IPQSE display excellent cycling stability with high capacity retention and Coulombic efficiency. The high-performance quasi-solid state Zn metal pouch cells are demonstrated, showing great promise for the practical application of the IPQSE.

14.
J Am Heart Assoc ; 13(16): e034749, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39119979

RESUMO

BACKGROUND: Stroke is a leading cause of death worldwide, with a lack of effective treatments for improving the prognosis. The aim of the present study was to identify novel therapeutic targets for functional outcome after ischemic stroke . METHODS AND RESULTS: Cis-expression quantitative trait loci data for druggable genes were used as instrumental variables. The primary outcome was the modified Rankin Scale score at 3 months after ischemic stroke, evaluated as a dichotomous variable (3-6 versus 0-2) and also as an ordinal variable. Drug target Mendelian randomization, Steiger filtering analysis, and colocalization analysis were performed. Additionally, phenome-wide Mendelian randomization analysis was performed to identify the safety of the drug target genes at the genetic level. Among >2600 druggable genes, genetically predicted expression of 16 genes (ABCC2, ATRAID, BLK, CD93, CHST13, NR1H3, NRBP1, PI3, RIPK4, SEMG1, SLC22A4, SLC22A5, SLCO3A1, TEK, TLR4, and WNT10B) demonstrated the causal associations with ordinal modified Rankin Scale (P<1.892×10-5) or poor functional outcome (modified Rankin Scale 3-6 versus 0-2, P<1.893×10-5). Steiger filtering analysis suggested potential directional stability (P<0.05). Colocalization analysis provided further support for the associations between genetically predicted expression of ABCC2, NRBP1, PI3, and SEMG1 with functional outcome after ischemic stroke. Furthermore, phenome-wide Mendelian randomization revealed additional beneficial indications and few potential safety concerns of therapeutics targeting ABCC2, NRBP1, PI3, and SEMG1, but the robustness of these results was limited by low power. CONCLUSIONS: The present study revealed 4 candidate therapeutic targets for improving functional outcome after ischemic stroke, while the underlying mechanisms need further investigation.


Assuntos
Estudo de Associação Genômica Ampla , AVC Isquêmico , Análise da Randomização Mendeliana , Humanos , AVC Isquêmico/genética , AVC Isquêmico/fisiopatologia , Proteína 2 Associada à Farmacorresistência Múltipla , Locos de Características Quantitativas , Masculino , Feminino , Idoso , Recuperação de Função Fisiológica , Pessoa de Meia-Idade , Resultado do Tratamento , Fenótipo , Estado Funcional
15.
Int J Ophthalmol ; 17(8): 1403-1410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156790

RESUMO

AIM: To investigate the effects of fibrillin-1 (FBN1) deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions. METHODS: Streptozotocin (STZ)-induced diabetic mice were used to simulate the diabetic conditions of diabetic retinopathy (DR) patients, and FBN1 expression was detected in retinas from STZ-diabetic mice and controls. In the Gene Expression Omnibus (GEO) database, the GSE60436 dataset was selected to analyze FBN1 expressions in fibrovascular membranes from DR patients. Using lentivirus to knock down FBN1 levels, vascular leakage and endothelial barrier integrity were detected by Evans blue vascular permeability assay, fluorescein fundus angiography (FFA) and immunofluorescence labeled with tight junction marker in vivo. High glucose-induced monkey retinal vascular endothelial cells (RF/6A) were used to investigate effects of FBN1 on the cells in vitro. The vascular endothelial barrier integrity and apoptosis were detected by trans-endothelial electrical resistance (TEER) assay and flow cytometry, respectively. RESULTS: FBN1 mRNA expression was increased in retinas of STZ-induced diabetic mice and fibrovascular membranes of DR patients (GSE60436 datasets) using RNA-seq approach. Besides, knocking down of FBN1 by lentivirus intravitreal injection significantly inhibited the vascular leakage compared to STZ-DR group by Evans blue vascular permeability assay and FFA detection. Expressions of tight junction markers in STZ-DR mouse retinas were lower than those in the control group, and knocking down of FBN1 increased the tight junction levels. In vitro, 30 mmol/L glucose could significantly inhibit viability of RF/6A cells, and FBN1 mRNA expression was increased under 30 mmol/L glucose stimulation. Down-regulation of FBN1 reduced high glucose (HG)-stimulated retinal microvascular endothelial cell permeability, increased TEER, and inhibited RF/6A cell apoptosis in vitro. CONCLUSION: The expression level of FBN1 increases in retinas and vascular endothelial cells under diabetic conditions. Down-regulation of FBN1 protects the retina of early diabetic rats from retina-blood barrier damage, reduce vascular leakage, cell apoptosis, and maintain vascular endothelial cell barrier function.

16.
Biochim Biophys Acta Mol Basis Dis ; : 167475, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159700

RESUMO

Acute lung injury (ALI) is a severe lung damage characterized by acute hypoxemia, increased pulmonary vascular permeability, and inflammatory reactions. Despite current treatments, mortality from ALI remains high. This study found that Sec13 is highly expressed in ALI and regulates it by glycolysis and epithelial-mesenchymal transition (EMT). In an ALI mouse model and cell model, Sec13 expression increased, accompanied by enhanced glycolysis, EMT, and inflammation. Sec13 knockdown suppressed these effects, alleviating ALI. Sec13 forms a protein complex with Pgm1, an enzyme regulating glucose-6-phosphate (G6P) production, and Ubqln1, an ubiquitin ligase. Sec13 inhibits Ubqln1-mediated Pgm1 ubiquitination, thereby stabilizing Pgm1. In ALI, Pgm1 binding to Sec13 increased but binding to Ubqln1 decreased. Sec13 knockdown decreased lactate, G6P, EMT markers, and inflammatory cytokines. Pgm1 knockdown produced similar effects. Ubqln1 overexpression suppressed inflammation but decreased Pgm1 expression. In conclusion, Sec13 plays a key role in ALI by inhibiting Ubqln1-mediated Pgm1 ubiquitination, affecting glycolysis and EMT. Sec13 and Pgm1 may be new targets for treating ALI.

17.
J Agric Food Chem ; 72(32): 18013-18026, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39088205

RESUMO

Glucose and lipid metabolism dysregulation in skeletal muscle contributes to the development of metabolic disorders. The efficacy of fucoxanthin in alleviating lipid metabolic disorders in skeletal muscle remains poorly understood. In this study, we systematically investigated the impact of fucoxanthin on mitigating lipid deposition and insulin resistance in skeletal muscle employing palmitic acid-induced lipid deposition in C2C12 cells and ob/ob mice. Fucoxanthin significantly alleviated PA-induced skeletal muscle lipid deposition and insulin resistance. In addition, fucoxanthin prominently upregulated the expression of lipid metabolism-related genes (Pparα and Cpt-1), promoting fatty acid ß-oxidation metabolism. Additionally, fucoxanthin significantly increased the expression of Pgc-1α and Tfam, elevated the mtDNA/nDNA ratio, and reduced ROS levels. Further, we identified pyruvate kinase muscle isozyme 1 (PKM1) as a high-affinity protein for fucoxanthin by drug affinity-responsive target stability and LC-MS and confirmed their robust interaction by CETSA, microscale thermophoresis, and circular dichroism. Supplementation with pyruvate, the product of PKM1, significantly attenuated the beneficial effects of fucoxanthin on lipid deposition and insulin resistance. Mechanistically, fucoxanthin reduced glucose glycolysis rate and enhanced mitochondrial biosynthesis and fatty acid ß-oxidation through inhibiting PKM1 activity, thereby alleviating lipid metabolic stress. These findings present a novel clinical strategy for treating metabolic diseases using fucoxanthin.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Músculo Esquelético , Piruvato Quinase , Xantofilas , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Xantofilas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Masculino , Humanos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
18.
J Neuroinflammation ; 21(1): 195, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097747

RESUMO

Chronic cerebral hypoperfusion (CCH), a disease afflicting numerous individuals worldwide, is a primary cause of cognitive deficits, the pathogenesis of which remains poorly understood. Bruton's tyrosine kinase inhibition (BTKi) is considered a promising strategy to regulate inflammatory responses within the brain, a crucial process that is assumed to drive ischemic demyelination progression. However, the potential role of BTKi in CCH has not been investigated so far. In the present study, we elucidated potential therapeutic roles of BTK in both in vitro hypoxia and in vivo ischemic demyelination model. We found that cerebral hypoperfusion induced white matter injury, cognitive impairments, microglial BTK activation, along with a series of microglia responses associated with inflammation, oxidative stress, mitochondrial dysfunction, and ferroptosis. Tolebrutinib treatment suppressed both the activation of microglia and microglial BTK expression. Meanwhile, microglia-related inflammation and ferroptosis processes were attenuated evidently, contributing to lower levels of disease severity. Taken together, BTKi ameliorated white matter injury and cognitive impairments induced by CCH, possibly via skewing microglia polarization towards anti-inflammatory and homeostatic phenotypes, as well as decreasing microglial oxidative stress damage and ferroptosis, which exhibits promising therapeutic potential in chronic cerebral hypoperfusion-induced demyelination.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Isquemia Encefálica , Substância Branca , Animais , Masculino , Camundongos , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Isquemia Encefálica/metabolismo , Doença Crônica , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Substância Branca/efeitos dos fármacos , Substância Branca/patologia , Substância Branca/metabolismo
19.
Br J Radiol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102827

RESUMO

OBJECTIVE: To determine whether adding elastography strain ratio (SR) and a deep learning based computer-aided diagnosis (CAD) system to breast ultrasound (US) can help reclassify Breast Imaging Reporting and Data System (BI-RADS) 3 & 4a-c categories and avoid unnecessary biopsies. METHODS: This prospective, multicenter study included 1049 masses (691 benign, 358 malignant) with assigned BI-RADS 3 & 4a-c between 2020 and 2022. CAD results was dichotomized possibly malignant vs. benign. All patients underwent SR and CAD examinations and histopathological findings were the standard of reference. Reduction of unnecessary biopsies (biopsies in benign lesions) and missed malignancies after reclassified (new BI-RADS 3) with SR and CAD were the outcome measures. RESULTS: Following the routine conventional breast US assessment, 48.6% (336 of 691 masses) underwent unnecessary biopsies. After reclassifying BI-RADS 4a masses (SR cut-off < 2.90, CAD dichotomized possibly benign), 25.62% (177 of 691 masses) underwent an unnecessary biopsies corresponding to a 50.14% (177 vs. 355) reduction of unnecessary biopsies. After reclassification, only 1.72% (9 of 523 masses) malignancies were missed in the new BI-RADS 3 group. CONCLUSION: Adding SR and CAD to clinical practice may show an optimal performance in reclassifying BI-RADS 4a to 3 categories, and 50.14% masses would be benefit by keeping the rate of undetected malignancies with an acceptable value of 1.72%. ADVANCES IN KNOWLEDGE: Leveraging the potential of SR in conjunction with CAD holds immense promise in substantially reducing the biopsy frequency associated with BI-RADS 3 and 4A lesions, thereby conferring substantial advantages upon patients encompassed within this cohort.

20.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3280-3287, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041090

RESUMO

Based on the insulin receptor substrate(IRS)/phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) pathway, the intervention effect of Yupingfeng Powder on type 2 diabetes mellitus(T2DM) rats was studied, and the potential mechanism of improving T2DM hepatic insulin resistance was explored. A T2DM rat model was established by feeding with high-fat and high-sugar feed combined with intraperitoneal injection of streptozotocin. Successfully modeled rats were selected and divided into a model group, a positive control group(MET), and a Yupingfeng Powder group. At the same time, a blank group was set up, and corresponding drugs were given by gavage. The model group and blank group were given an equal amount of physiological saline by gavage. During the experiment, body mass and fasting blood glucose were regularly measured, and glucose tolerance and insulin tolerance were measured at the end of the experiment. After the experiment, the levels of blood glucose, insulin, blood lipids, and related liver function indicators were measured; changes in liver pathological damage were observed, levels of liver monoamine oxidase were detected, and qRT-PCR was used to detect mRNA expression levels of IRS/PI3K/Akt pathway related genes. Compared with the model group, the Yupingfeng Powder group had an increase in body weight, a decrease in fasting blood glucose, fasting insulin, and steady-state model evaluation index, a decrease in the area under the curve of glucose tolerance and insulin tolerance tests, a decrease in serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol content, and an increase in high-density lipoprotein cholesterol content. Compared with the model group, the Yupingfeng Powder group showed a decrease in liver monoamine oxidase levels, a decrease in serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total bilirubin levels, and an increase in total protein and albumin levels. Hematoxylin-eosin(HE) staining showed a reduction in pathological liver cell damage. Compared with the model group, the Yupingfeng Powder group showed a significant increase in the mRNA expression levels of IRS1, PI3K, and Akt in the liver of rats, as well as a significant decrease in the mRNA expression levels of interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α). This indicates that Yupingfeng Powder can regulate the IRS/PI3K/Akt signaling pathway and glucose and lipid metabolism disorders, increase insulin sensitivity, improve hepatic insulin resistance, and thus play a therapeutic role in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina , Fígado , Fosfatidilinositol 3-Quinases , Pós , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Glicemia/metabolismo , Insulina/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA