Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4784, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839772

RESUMO

Two-dimensional topological insulators hosting the quantum spin Hall effect have application potential in dissipationless electronics. To observe the quantum spin Hall effect at elevated temperatures, a wide band gap is indispensable to efficiently suppress bulk conduction. Yet, most candidate materials exhibit narrow or even negative band gaps. Here, via elegant control of van der Waals epitaxy, we have successfully grown monolayer ZrTe5 on a bilayer graphene/SiC substrate. The epitaxial ZrTe5 monolayer crystalizes in two allotrope isomers with different intralayer alignments of ZrTe3 prisms. Our scanning tunneling microscopy/spectroscopy characterization unveils an intrinsic full band gap as large as 254 meV and one-dimensional edge states localized along the periphery of the ZrTe5 monolayer. First-principles calculations further confirm that the large band gap originates from strong spin-orbit coupling, and the edge states are topologically nontrivial. These findings thus provide a highly desirable material platform for the exploration of the high-temperature quantum spin Hall effect.

2.
Sci Bull (Beijing) ; 69(10): 1392-1399, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38594099

RESUMO

Magnetic impurities in superconductors are of increasing interest due to emergent Yu-Shiba-Rusinov (YSR) states and Majorana zero modes for fault-tolerant quantum computation. However, a direct relationship between the YSR multiple states and magnetic anisotropy splitting of quantum impurity spins remains poorly characterized. By using scanning tunneling microscopy, we systematically resolve individual transition-metal (Fe, Cr, and Ni) impurities induced YSR multiplets as well as their Zeeman effects in the K3C60 superconductor. The YSR multiplets show identical d orbital-like wave functions that are symmetry-mismatched to the threefold K3C60(1 1 1) host surface, breaking point-group symmetries of the spatial distribution of YSR bound states in real space. Remarkably, we identify an unprecedented fermion-parity-preserving quantum phase transition between ground states with opposite signs of the uniaxial magnetic anisotropy that can be manipulated by an external magnetic field. These findings can be readily understood in terms of anisotropy splitting of quantum impurity spins, and thus elucidate the intricate interplay between the magnetic anisotropy and YSR multiplets.

3.
Natl Sci Rev ; 11(4): nwae042, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38487497

RESUMO

Tracking the dynamic surface evolution of metal halide perovskite is crucial for understanding the corresponding fundamental principles of photoelectric properties and intrinsic instability. However, due to the volatility elements and soft lattice nature of perovskites, several important dynamic behaviors remain unclear. Here, an ultra-high vacuum (UHV) interconnection system integrated by surface-sensitive probing techniques has been developed to investigate the freshly cleaved surface of CH3NH3PbBr3  in situ under given energy stimulation. On this basis, the detailed three-step chemical decomposition pathway of perovskites has been clarified. Meanwhile, the evolution of crystal structure from cubic phase to tetragonal phase on the perovskite surface has been revealed under energy stimulation. Accompanied by chemical composition and crystal structure evolution, electronic structure changes including energy level position, hole effective mass, and Rashba splitting have also been accurately determined. These findings provide a clear perspective on the physical origin of optoelectronic properties and the decomposition mechanism of perovskites.

4.
Nat Commun ; 14(1): 6320, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813844

RESUMO

Polymorphic structures of transition metal dichalcogenides (TMDs) host exotic electronic states, like charge density wave and superconductivity. However, the number of these structures is limited by crystal symmetries, which poses a challenge to achieving tailored lattices and properties both theoretically and experimentally. Here, we report a coloring-triangle (CT) latticed MoTe2 monolayer, termed CT-MoTe2, constructed by controllably introducing uniform and ordered mirror-twin-boundaries into a pristine monolayer via molecular beam epitaxy. Low-temperature scanning tunneling microscopy and spectroscopy (STM/STS) together with theoretical calculations reveal that the monolayer has an electronic Janus lattice, i.e., an energy-dependent atomic-lattice and a Te pseudo-sublattice, and shares the identical geometry with the Mo5Te8 layer. Dirac-like and flat electronic bands inherently existing in the CT lattice are identified by two broad and two prominent peaks in STS spectra, respectively, and verified with density-functional-theory calculations. Two types of intrinsic domain boundaries were observed, one of which maintains the electronic-Janus-lattice feature, implying potential applications as an energy-tunable electron-tunneling barrier in future functional devices.

5.
J Phys Chem Lett ; 14(32): 7149-7156, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37540032

RESUMO

Superlattice potentials imposed on graphene can alter its Dirac states, enabling the realization of various quantum phases. We report the experimental observation of a replica Dirac cone at the Brillouin zone center induced by a superlattice in heavily doped graphene with Gd intercalation using angle-resolved photoemission spectroscopy (ARPES). The replica Dirac cone arises from the (√3× âˆš3)R30° superlattice formed by the intervalley coupling of two nonequivalent valleys (e.g., the Kekulé-like distortion phase), accompanied by a bandgap opening. According to the findings, the replica Dirac band in Gd-intercalated graphene disappears beyond a critical temperature of 30 K and can be suppressed by potassium adsorption. The modulation of the replica Dirac band is primarily attributable to the residual frozen gas, which can act as a source of intervalley scattering at temperatures below 30 K. Our results highlight the persistence of the hidden Kekulé-like phase within the heavily doped graphene, enriching our current understanding of its replica Dirac Fermions.

6.
Nanoscale Adv ; 5(10): 2785-2793, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37205292

RESUMO

Kagome metal CsV3Sb5 has attracted unprecedented attention due to the charge density wave (CDW), Z2 topological surface states and unconventional superconductivity. However, how the paramagnetic bulk CsV3Sb5 interacts with magnetic doping is rarely explored. Here we report a Mn-doped CsV3Sb5 single crystal successfully achieved by ion implantation, which exhibits obvious band splitting and enhanced CDW modulation via angle-resolved photoemission spectroscopy (ARPES). The band splitting is anisotropic and occurs in the entire Brillouin region. We observed a Dirac cone gap at the K point but it closed at 135 K ± 5 K, much higher than the bulk value of ∼94 K, suggesting enhanced CDW modulation. According to the facts of the transferred spectral weight to the Fermi level and weak antiferromagnetic order at low temperature, we ascribe the enhanced CDW to the polariton excitation and Kondo shielding effect. Our study not only offers a simple method to realize deep doping in bulk materials, but also provides an ideal platform to explore the coupling between exotic quantum states in CsV3Sb5.

7.
Sci Bull (Beijing) ; 68(10): 990-997, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100643

RESUMO

The itinerant ferromagnetism can be induced by a van Hove singularity (VHS) with a divergent density of states at Fermi level. Utilizing the giant magnified dielectric constant εr of SrTiO3(111) substrate with cooling, here we successfully manipulated the VHS in the epitaxial monolayer (ML) 1T-VSe2 film approaching to Fermi level via the large interfacial charge transfer, and thus induced a two-dimensional (2D) itinerant ferromagnetic state below 3.3 K. Combining the direct characterization of the VHS structure via angle-resolved photoemission spectroscopy (ARPES), together with the theoretical analysis, we ascribe the manipulation of VHS to the physical origin of the itinerant ferromagnetic state in ML 1T-VSe2. Therefore, we further demonstrated that the ferromagnetic state in the 2D system can be controlled through manipulating the VHS by engineering the film thickness or replacing the substrate. Our findings clearly evidence that the VHS can serve as an effective manipulating degree of freedom for the itinerant ferromagnetic state, expanding the application potentials of 2D magnets for the next-generation information technology.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Imãs , Temperatura Baixa
8.
Phys Rev Lett ; 130(3): 036203, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763396

RESUMO

Flat bands (FBs), presenting a strongly interacting quantum system, have drawn increasing interest recently. However, experimental growth and synthesis of FB materials have been challenging and have remained elusive for the ideal form of monolayer materials where the FB arises from destructive quantum interference as predicted in 2D lattice models. Here, we report surface growth of a self-assembled monolayer of 2D hydrogen-bond (H-bond) organic frameworks (HOFs) of 1,3,5-tris(4-hydroxyphenyl)benzene (THPB) on Au(111) substrate and the observation of FB. High-resolution scanning tunneling microscopy or spectroscopy shows mesoscale, highly ordered, and uniform THPB HOF domains, while angle-resolved photoemission spectroscopy highlights a FB over the whole Brillouin zone. Density-functional-theory calculations and analyses reveal that the observed topological FB arises from a hidden electronic breathing-kagome lattice without atomically breathing bonds. Our findings demonstrate that self-assembly of HOFs provides a viable approach for synthesis of 2D organic topological materials, paving the way to explore many-body quantum states of topological FBs.

9.
Sci Bull (Beijing) ; 68(2): 165-172, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36653217

RESUMO

Topological boundary states emerged at the spatial boundary between topological non-trivial and trivial phases, are usually gapless, or commonly referred as metallic states. For example, the surface state of a topological insulator is a gapless Dirac state. These metallic topological boundary states are typically well described by non-interacting fermions. However, the behavior of topological boundary states with significant electron-electron interactions, which could turn the gapless boundary states into gapped ordered states, e.g., density wave states or superconducting states, is of great interest theoretically, but is still lacking evidence experimentally. Here, we report the observation of incommensurable charge density wave (CDW) formed on the topological boundary states driven by the electron-electron interactions on the (001) surface of CoSi. The wavevector of CDW varies as the temperature changes, which coincides with the evolution of topological surface Fermi arcs with temperature. The orientation of the CDW phase is determined by the chirality of the Fermi arcs, which indicates a direct association between CDW and Fermi arcs. Our finding will stimulate the search of more interactions-driven ordered states, such as superconductivity and magnetism, on the boundaries of topological materials.

10.
J Phys Chem Lett ; 13(40): 9396-9403, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36190902

RESUMO

The quantum interference patterns induced by impurities in graphene can form the (√3 × âˆš3)R30° superlattice with intervalley scattering. This superlattice can lead to the folded Dirac cone at the center of Brillouin zone by coupling two non-equivalent valleys. Using angle-resolved photoemission spectroscopy (ARPES), we report the observation of suppression of the folded Dirac cone in mono- and bilayer graphene upon potassium doping. The intervalley coupling with chiral symmetry broken can persist upon a light potassium-doped level but be ruined at the heavily doped level. Meanwhile, the folded Dirac cone can be suppressed by the renormalization of the Dirac band with potassium doping. Our results demonstrate that the suppression of the intervalley scattering pattern by potassium doping could pave the way toward the realization of novel chiraltronic devices in superlattice graphene.

11.
Nano Lett ; 22(1): 476-484, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978815

RESUMO

A charge density wave (CDW) is a collective quantum phenomenon in metals and features a wavelike modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin materials remain hot topics in materials physics. By means of material engineering, we realized a dimensionality and Zr intercalation induced semiconductor-metal phase transition in 1T-ZrX2 (X = Se, Te) ultrathin films, accompanied by a commensurate 2 × 2 CDW order. Furthermore, we observed a CDW energy gap of up to 22 meV around the Fermi level. Fourier-transformed scanning tunneling microscopy and angle-resolved photoemission spectroscopy reveal that 1T-ZrX2 films exhibit the simplest Fermi surface among the known CDW materials in TMDCs, consisting only of a Zr 4d derived elliptical electron conduction band at the corners of the Brillouin zone.

12.
Natl Sci Rev ; 8(10): nwab093, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34858613

RESUMO

Selective C(sp3) -H activation is of fundamental importance in processing alkane feedstocks to produce high-value-added chemical products. By virtue of an on-surface synthesis strategy, we report selective cascade dehydrogenation of n-alkane molecules under surface constraints, which yields monodispersed all-trans conjugated polyenes with unprecedented length controllability. We are also able to demonstrate the generality of this concept for alkyl-substituted molecules with programmable lengths and diverse functionalities, and more importantly its promising potential in molecular wiring.

13.
Nano Lett ; 21(19): 8258-8265, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34570496

RESUMO

The scattering process induced by impurities in graphene plays a key role in transport properties. Especially, the disorder impurities can drive the ordered state with a hexagonal superlattice on graphene by electron-mediated interaction at a transition temperature. Using angle-resolved photoemission spectroscopy (ARPES), we reveal that the epitaxial monolayer and bilayer graphene with various impurities display global elastic intervalley scattering and quantum interference below the critical temperature (34 K), which leads to a set of new folded Dirac cones at the Brillouin-zone center by mixing two inequivalent Dirac cones. The Dirac electrons generated from intervalley scattering without chirality can be due to the breaking of the sublattice symmetry. In addition, the temperature-dependent ARPES measurements indicate the thermal damping of quantum interference patterns from Dirac electron scattering on impurities. Our results demonstrate that the electron scattering and interference induced by impurities can completely modulate the Dirac bands of graphene.

14.
Materials (Basel) ; 14(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34443107

RESUMO

The phenomenon of oxygen incorporation-induced superconductivity in iron telluride (Fe1+yTe, with antiferromagnetic (AFM) orders) is intriguing and quite different from the case of FeSe. Until now, the microscopic origin of the induced superconductivity and the role of oxygen are far from clear. Here, by combining in situ scanning tunneling microscopy/spectroscopy (STM/STS) and X-ray photoemission spectroscopy (XPS) on oxygenated FeTe, we found physically adsorbed O2 molecules crystallized into c (2/3 × 2) structure as an oxygen overlayer at low temperature, which was vital for superconductivity. The O2 overlayer were not epitaxial on the FeTe lattice, which implied weak O2 -FeTe interaction but strong molecular interactions. The energy shift observed in the STS and XPS measurements indicated a hole doping effect from the O2 overlayer to the FeTe layer, leading to a superconducting gap of 4.5 meV opened across the Fermi level. Our direct microscopic probe clarified the role of oxygen on FeTe and emphasized the importance of charge transfer effect to induce superconductivity in iron-chalcogenide thin films.

15.
ACS Appl Mater Interfaces ; 13(15): 17869-17881, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33847479

RESUMO

For the inverted organic solar cells (OSCs), the interface contacts between the ZnO electron transporting layer and the organic active layer play an important role in the device performance and stability. Since the solution-processed ZnO surface always contains some base or zinc salt contaminants, we explored how the surface pH conditions influence the performance and stability of the nonfullerene acceptor (NFA) cells. A tight relationship between the surface pH condition and the device performance and stability was established. Specifically, device performance and stability were improved by treating the ZnO films with acid solutions but worsened after base treatment. The large number of hydroxyl groups on the surface of the solution-processed ZnO films was proved to be the main reason for the surface pH condition-related performance, which caused oxygen-deficient defects and unfavorable vertical phase separation in the blend films, hindered the photogenerated charge transfer and collection, and consequently resulted in low short-circuit current density and power conversion efficiency (PCE). The surface -OH groups also boosted the photocatalytic activity and led to fast degradation of the nonfullerene acceptor. Removal of the surface -OH groups can alleviate such problems. Different acid solutions, ZrAcac, 2-phenylethylmercaptan (PET), and glutamic acid (GC), were used to treat the ZnO films, and PET treatment was the most effective treatment for performance improvement. An efficiency of 16.46% was achieved for the PM6:Y6 cells and the long-term stability under continuous illumination conditions was significantly improved with a T80 lifetime of over 4000 h (4410 h), showing the excellent long-term stability of this heterojunction solar cell. Our understanding of the surface pH condition-related device performance and stability would guide the development of a feasible method for solving the interface problems in OSCs. We also provide a practical strategy to modify ZnO with acid solutions for high-performance and stable NFA OSCs.

16.
Adv Mater ; 33(7): e2004930, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33382156

RESUMO

The WSe2 monolayer in 1T' phase is reported to be a large-gap quantum spin Hall insulator, but is thermodynamically metastable and so far the fabricated samples have always been in the mixed phase of 1T' and 2H, which has become a bottleneck for further exploration and potential applications of the nontrivial topological properties. Based on first-principle calculations in this work, it is found that the 1T' phase could be more stable than 2H phase with enhanced interface interactions. Inspired by this discovery, SrTiO3 (100) is chosen as substrate and WSe2 monolayer is successfully grown in a 100% single 1T' phase using the molecular beam epitaxial method. Combining in situ scanning tunneling microscopy and angle-resolved photoemission spectroscopy measurements, it is found that the in-plane compressive strain in the interface drives the 1T'-WSe2 into a semimetallic phase. Besides providing a new material platform for topological states, the results show that the interface interaction is a new approach to control both the structure phase stability and the topological band structures of transition metal dichalcogenides.

17.
ACS Nano ; 14(7): 8299-8306, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32579335

RESUMO

One-dimensional (1D) metallic mirror-twin boundaries (MTBs) in monolayer transition-metal dichalcogenides exhibit a periodic charge modulation and provide an ideal platform for exploring collective electron behavior in the confined system. The underlying mechanism of the charge modulation and how the electrons travel in 1D structures remain controversial. Here, for the first time, we observed atomic-scale structures of the charge distribution within one period in MTB of monolayer MoTe2 by using scanning tunneling microscopy/spectroscopy. The coexisting apparent periodic lattice distortions and U-shaped energy gap clearly demonstrate a Peierls-type charge density wave (CDW). Equidistant quantized energy levels with varied periodicity are further discovered outside the CDW gap along the metallic MTB. Density functional theory calculations are in good agreement with the gapped electronic structures and reveal that they originate mainly from a Mo 4d orbital. Our work presents hallmark evidence of the 1D Peierls-type CDW on the metallic MTBs and offers opportunities to study the underlying physics of 1D charge modulation.

18.
Sci Rep ; 9(1): 16969, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740691

RESUMO

We present a systematic study of surface band bending in Ga-polar n-GaN with different Si doping concentrations by angular dependent X-ray photoelectron spectroscopy (ADXPS). The binding energies of Ga 3d and N 1 s core levels in n-GaN films increase with increasing the emission angle, i. e., the probing depth, suggesting an upward surface band bending. By fitting the Ga 3d core level spectra at different emission angles and considering the integrated effect of electrostatic potential, the core level energy at the topmost surface layer is well corrected, therefore, the surface band bending is precisely evaluated. For moderately doped GaN, the electrostatic potential can be reflected by the simply linear potential approximation. However, for highly doped GaN samples, in which the photoelectron depth is comparable to the width of the space charge region, quadratic depletion approximation was used for the electrostatic potential to better understand the surface band bending effect. Our work improves the knowledge of surface band bending determination by ADXPS and also paves the way for studying the band bending effect in the interface of GaN based heterostructures.

19.
Phys Chem Chem Phys ; 20(29): 19486-19491, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29998269

RESUMO

We report the discovery of bridge-bonded methylthiolate, SCH3, along the step edges of the Au(111) surface. Real-space imaging with a scanning tunnelling microscope reveals the presence of bridge-bonded SCH3 along both the [11[combining macron]0] and the [112[combining macron]] oriented step edges. The nearest neighbour distances of SCH3 along these steps are 2a and , respectively. The Au(111) terrace is covered with the usual CH3SAuSCH3 staples. The bridge-bonded alkanethiolate is expected to play a rather significant role in the formation of thiol-passivated Au nanoclusters because of the high fraction of atoms in similar low-coordination sites.

20.
Sci Rep ; 8(1): 8521, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867157

RESUMO

Contact property is now becoming to be a key factor for achieving high performance and high reliability in GaN-based III-V semiconductor devices. Energetic ion sputter, as an effective interface probe, is widely used to profile the metal/GaN contacts for interfacial analysis and process optimization. However, the details of ion-induced interfacial reaction, as well as the formation of sputter by-products at the interfaces are still unclear. Here by combining state-of-the-art Ar+ ion sputter with in-situ X-ray photoelectron spectroscopy (XPS) and ex-situ high resolution transmission electron microscopy (HRTEM), we have observed clearly not only the ion-induced chemical state changes at interface, but also the by-products at the prototypical Ti/GaN system. For the first time, we identified the formation of a metallic Ga layer at the GaOx/GaN interface. At the Ti/GaOx interface, TiCx components were also detected due to the reaction between metal Ti and surface-adsorbed C species. Our study reveals that the corresponding core level binding energy and peak intensity obtained from ion sputter depth profile should be treated with much caution, since they will be changed due to ion-induced interface reactions and formation of by-products during ion bombardment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...