Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Clin Transl Oncol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017955

RESUMO

BACKGROUND: Biomarkers for colorectal cancer (CRC) can complement population screening methods, but so far, few plasma proteins have been identified as biomarkers for CRC. This study aims to identify potential protein biomarkers and therapeutic targets for CRC within the proteome range. METHODS: We extracted summary-level data of circulating protein from 7 published genome-wide association studies (GWASs) of plasma proteome for Mendelian randomization (MR), summary-data-based MR (SMR), and co-localization analyses to screen and validate proteins with causal effects in CRC. In addition, we further conducted druggability evaluation, prognosis analysis at the transcriptional level, and enrichment expression at the single-cell level, highlighting the important role of these plasma protein biomarkers in CRC. RESULTS: We identified 117 plasma protein biomarkers associated with CRC risk, with 9 proteins showing stronger genetic correlations in Bayesian co-localization (PP.H4 > 0.70). Further, we found 26 protein-coding genes already used in targeted drug development and may potentially become therapeutic targets for CRC. In prognosis analysis, the encoding genes of plasma proteins exhibited consistent effects with MR analysis and can serve as prognostic biomarkers for CRC. Additionally, we also found that the differentially expressed proteins are mainly expressed in fibroblasts, endothelial cells, macrophages, and T cells. CONCLUSION: Our study has identified plasma protein biomarkers associated with CRC risk, which may complement population screening methods for CRC and achieve more precise treatment for patients.

3.
Clin. transl. oncol. (Print) ; 26(3): 630-643, mar. 2024.
Artigo em Inglês | IBECS | ID: ibc-230793

RESUMO

Purpose Metabolic reprogramming is a novel hallmark and therapeutic target of cancer. Our study aimed to establish fatty acid metabolism-associated scores based on gene signature and investigated its effects on immunotherapy in colon cancer. Methods Gene expression and clinical information were collected from Gene Expression Omnibus (GEO) database to identify a gene signature by non-negative matrix factorization (NMF) clustering and Cox regression analysis. Subsequently, we constructed the fatty acid metabolism score (FA-score) model by principal component analysis (PCA) and explored its relativity of prognosis and the response to immunotherapy in colon cancer. Finally, the Cancer Genome Atlas (TCGA) database was introduced and in vitro study was performed for verification. Results The FA-score-high group had a higher level of fatty acid metabolism and was associated with worse patient overall survival. Significantly, FA-score correlated closely with the biomarkers of immunotherapy, and the FA-score-high group had a poorer therapeutic efficacy of immune checkpoint blockade. In vitro experiments demonstrated that ACSL5 may be a critical metabolic regulatory target. Conclusions Our study provided a comprehensive analysis of the heterogeneity of fatty acid metabolism in colon cancer. We highlighted the potential clinical utility of fatty acid metabolism-related genes to be biomarkers of colon cancer prognosis and targets to improve the effect of immunotherapy (AU)


Assuntos
Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Imunoterapia/métodos , Biomarcadores/sangue , Ácidos Graxos , Prognóstico
4.
Antioxidants (Basel) ; 13(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38397811

RESUMO

Ulcerative colitis is an inflammatory bowel disease with multiple pathogeneses. Here, we aimed to study the therapeutic role of ulinastatin (UTI), an anti-inflammatory bioagent, and its associated mechanisms in treating colitis. Dextran sulfate sodium was administrated to induce colitis in mice, and a subgroup of colitis mice was treated with UTI. The gut barrier defect and inflammatory manifestations of colitis were determined via histological and molecular experiments. In addition, transcriptomics, metagenomics, and metabolomics were employed to explore the possible mechanisms underlying the effects of UTI. We found that UTI significantly alleviated the inflammatory manifestations and intestinal barrier damage in the mice with colitis. Transcriptome sequencing revealed a correlation between the UTI treatment and JAK-STAT signaling pathway. UTI up-regulated the expression of SOCS1, which subsequently inhibited the phosphorylation of JAK2 and STAT3, thus limiting the action of inflammatory mediators. In addition, 16S rRNA sequencing illustrated that UTI maintained a more stable intestinal flora, protecting the gut from dysbiosis in colitis. Moreover, metabolomics analysis demonstrated that UTI indeed facilitated the production of some bile acids and short-chain fatty acids, which supported intestinal homeostasis. Our data provide evidence that UTI is effective in treating colitis and support the potential use of UTI treatment for patients with ulcerative colitis.

5.
PeerJ ; 12: e16911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371373

RESUMO

Objective: E2F transcription factors are associated with tumor development, but their underlying mechanisms in gastric cancer (GC) remain unclear. This study explored whether E2Fs determine the prognosis or immune and therapy responses of GC patients. Methods: E2F regulation patterns from The Cancer Genome Atlas (TCGA) were systematically investigated and E2F patterns were correlated with the characteristics of cellular infiltration in the tumor microenvironment (TME). A principal component analysis was used to construct an E2F scoring model based on prognosis-related differential genes to quantify the E2F regulation of a single tumor. This scoring model was then tested in patient cohorts to predict effects of immunotherapy. Results: Based on the expression profiles of E2F transcription factors in GC, two different regulatory patterns of E2F were identified. TME and survival differences emerged between the two clusters. Lower survival rates in the Cluster2 group were attributed to limited immune function due to stromal activation. The E2F scoring model was then constructed based on the E2F-related prognostic genes. Evidence supported the E2F score as an independent and effective prognostic factor and predictor of immunotherapy response. A gene-set analysis correlated E2F score with the characteristics of immune cell infiltration within the TME. The immunotherapy cohort database showed that patients with a higher E2F score demonstrated better survival and immune responses. Conclusions: This study found that differences in GC prognosis might be related to the E2F patterns in the TME. The E2F scoring system developed in this study has practical value as a predictor of survival and treatment response in GC patients.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Microambiente Tumoral/genética , Imunoterapia , Bases de Dados Factuais , Fatores de Transcrição E2F
6.
J Cancer ; 15(3): 809-824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213725

RESUMO

Background: Colorectal cancer (CRC) is one of the most common malignant tumors and has high morbidity and mortality rates. Previous studies have shown that TSPEAR mutations are involved in the development and progression of gastric cancer and liver cancer. However, the role of TSPEAR in CRC is still unclear. Methods: In The Cancer Genome Atlas (TCGA) database, 590 CRC patients with complete survival information were analyzed. We assessed TSPEAR expression in a pan-cancer dataset from the TCGA database. Cox regression analysis was performed to evaluate factors associated with prognosis. Enrichment analysis via the R package "clusterProfiler" was used to explore the potential function of TSPEAR. The single-sample GSEA (ssGSEA) method from the R package "GSVA" and the TIMER database were used to investigate the association between the immune infiltration level and TSPEAR expression in CRC. The R package "maftools" was used to explore the association between tumour mutation burden (TMB) and TSPEAR expression in CRC. CCK-8 assays and cell invasion assays were used to detect the effect of TSPEAR and TGIF2 on the biological behavior of CRC cells. Results: Pan-cancer analysis revealed that TSPEAR was upregulated in CRC tissues compared to normal tissues and that high TSPEAR expression was associated with poorer overall survival (OS) (p=0.0053). The expression of TSPEAR increased with increasing TNM stage, T stage, N stage, and M stage. The nomogram constructed with TSPEAR, age, and TNM stage showed better predictive value than TSPEAR, age, or TNM stage alone. Immune cell infiltration analysis revealed that high expression of TSPEAR was associated with lower immune cell infiltration. Tumor mutation burden (TMB) analysis indicated that high expression of TSPEAR was associated with lower TMB (p=0.005), and high TMB was associated with shorter OS (p=0.02). CCK-8 assays and cell invasion assays indicated that in vitro knockdown of TSPEAR inhibited the proliferation, migration, and invasion of CRC cells. In addition, TSPEAR expression may be regulated by the upstream transcription factor TGIF2. Conclusion: TSPEAR expression was higher in CRC tissues than in normal tissues. Its upregulation was significantly associated with a poor prognosis. Additionally, TSPEAR plays a significant role in tumor immunity and the biological behavior of CRC cells. Thus, TSPEAR may become a promising prognostic biomarker and therapeutic target for CRC patients.

7.
Clin Transl Oncol ; 26(3): 630-643, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37480430

RESUMO

PURPOSE: Metabolic reprogramming is a novel hallmark and therapeutic target of cancer. Our study aimed to establish fatty acid metabolism-associated scores based on gene signature and investigated its effects on immunotherapy in colon cancer. METHODS: Gene expression and clinical information were collected from Gene Expression Omnibus (GEO) database to identify a gene signature by non-negative matrix factorization (NMF) clustering and Cox regression analysis. Subsequently, we constructed the fatty acid metabolism score (FA-score) model by principal component analysis (PCA) and explored its relativity of prognosis and the response to immunotherapy in colon cancer. Finally, the Cancer Genome Atlas (TCGA) database was introduced and in vitro study was performed for verification. RESULTS: The FA-score-high group had a higher level of fatty acid metabolism and was associated with worse patient overall survival. Significantly, FA-score correlated closely with the biomarkers of immunotherapy, and the FA-score-high group had a poorer therapeutic efficacy of immune checkpoint blockade. In vitro experiments demonstrated that ACSL5 may be a critical metabolic regulatory target. CONCLUSIONS: Our study provided a comprehensive analysis of the heterogeneity of fatty acid metabolism in colon cancer. We highlighted the potential clinical utility of fatty acid metabolism-related genes to be biomarkers of colon cancer prognosis and targets to improve the effect of immunotherapy.


Assuntos
Neoplasias do Colo , Humanos , Prognóstico , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Imunoterapia , Biomarcadores , Ácidos Graxos
8.
Front Oncol ; 13: 1234045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564935

RESUMO

Background: As the most common gastrointestinal malignancy worldwide, liver metastases occur in half colorectal cancer (CRC) patients. Early detection can help treat them early and reduce mortality in patients with colorectal cancer liver metastases (CRLM). Finding useful biomarkers for CRLM is thus essential. Methods: The TCGA and GEO databases were used to download the expression profiles and clinical data of the patients. Differential analysis screened for genes associated with CRLM, and univariate Cox regression analysis identified genes associated with prognosis. The least absolute shrinkage and selection operator (LASSO) method further preferred genes to construct a prognostic signature. Kaplan-Meier survival curves were used to show patients' overall survival (OS). Receiver operating characteristic (ROC) curves showed the accuracy of the model. Risk scores and clinical characteristics of patients were included in multivariate Cox regression analysis to identify independent risk factors, and a nomogram was constructed. The proportion of immune cells and infiltration were assessed using the 'CIBERSORT' package and the 'ESTIMATE' package. Results: We constructed a signature consisting of seven CRLM-associated genes, and signature-based risk scores have great potential in estimating the prognosis of CRC patients. Moreover, the poor response to immunotherapy in high-risk patients might contribute to the poor prognosis of individuals. Furthermore, we found that overexpression of Hepcidin antimicrobial peptide (HAMP), the only gene highly expressed in CRC and liver metastatic tissues, promoted CRC development and that it was associated with tumor mutation burden (TMB), DNA mismatch repair (MMR) genes, and microsatellite instability (MSI) in various tumors. Finally, we found that in CRC patients, low expression of HAMP also represented a better immunotherapeutic outcome, reflecting the critical role of HAMP in guiding immunotherapy. Conclusion: We identified a prognostic signature containing 7 CRLM-associated genes, and the signature was specified as an independent predictor and a nomogram containing the risk score was built accordingly. In addition, the derived gene HAMP could help guide the exploration of profitable immunotherapeutic strategies.

9.
Front Oncol ; 13: 1190229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223685

RESUMO

Background: Given the key role of integrins in maintaining intestinal homeostasis, anti-integrin biologics in inflammatory bowel disease (IBD) are being investigated in full swing. However, the unsatisfactory efficacy and safety of current anti-integrin biologics in clinical trials limit their widespread use in clinic. Therefore, it is particularly important to find a target that is highly and specifically expressed in the intestinal epithelium of patients with IBD. Methods: The function of integrin αvß6 in IBD and colitis-associated carcinoma (CAC) with the underlying mechanisms has been less studied. In the present study, we detected the level of integrin ß6 within inflammation including colitis tissues in human and mouse. To investigate the role of integrin ß6 in IBD and CAC, integrin ß6 deficient mice were hence generated based on the construction of colitis and CAC model. Results: We noted that integrin ß6 was significantly upregulated in inflammatory epithelium of patients with IBD. Integrin ß6 deletion not only reduced infiltration of pro-inflammatory cytokines, but also attenuated disruption of tight junctions between colonic epithelial cells. Meanwhile, lack of integrin ß6 affected macrophage infiltration in mice with colitis. This study further revealed that lack of integrin ß6 could inhibit tumorigenesis and tumor progression in CAC model by influencing macrophage polarization, which was also involved in attenuating the degree of intestinal symptoms and inflammatory responses in mice suffering from colitis. Conclusions: The present research provides a potentially new perspective and option for the treatment of IBD and CAC.

10.
Cells ; 11(13)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805163

RESUMO

Integrin ß3 plays a key role in the resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI), but the development of integrin ß3 inhibitors has been stalled due to the failure of phase III clinical trials for cancer treatment. Therefore, it is imperative to find a potentially effective solution to the problem of acquired resistance to EGFR-TKI for patients with integrin-ß3 positive non-small-cell lung cancer (NSCLC) by exploring novel downstream targets and action mechanisms of integrin ß3. In the present study, we observed that the expression of integrin ß3 and AXL was significantly upregulated in erlotinib-resistant NSCLC cell lines, which was further confirmed clinically in tumor specimens from patients with NSCLC who developed acquired resistance to erlotinib. Through ectopic expression or knockdown, we found that AXL expression was positively regulated by integrin ß3. In addition, integrin ß3 promoted erlotinib resistance in NSCLC cells by upregulating AXL expression. Furthermore, the YAP pathway, rather than pathways associated with ERK or AKT, was involved in the regulation of AXL by integrin ß3. To investigate the clinical significance of this finding, the current well-known AXL inhibitor R428 was tested, demonstrating that R428 significantly inhibited resistance to erlotinib, colony formation, epithelial-mesenchymal transformation and cell migration induced by integrin ß3. In conclusion, integrin ß3 could promote resistance to EGFR-TKI in NSCLC by upregulating the expression of AXL through the YAP pathway. Patients with advanced NSCLC, who are positive for integrin ß3, might benefit from a combination of AXL inhibitors and EGFR-TKI therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Humanos , Integrina beta3/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
11.
Int J Biol Sci ; 18(10): 3944-3960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844799

RESUMO

Our understanding of coding gene functions in lung cancer leads to the development of multiple generations of targeted drugs. Noncoding RNAs, including circular RNAs (circRNAs), have been demonstrated to play a vital role in tumorigenesis. Uncovering the functions of circRNAs in tumorigenesis and their underlying regulatory mechanisms may shed new light on the development of novel diagnostic and therapeutic strategies for human cancer. Here we report the important role of circFAT1 in lung adenocarcinoma (LUAD) progression and the potential impact of circFAT1 on LUAD treatment. We found that circFAT1 was one of the top expressed circRNAs in A549 cells by circRNA-seq and was significantly upregulated in human LUAD tissues. Multiple cellular assays with A549 and PC9 LAUD cell lines under both gain-of-function and loss-of-function conditions demonstrated that circFAT1 promoted proliferation of LUAD cells in vitro and in vivo. At molecular level, circFAT1 sequestered miR-7 to upregulate IRS2, which in turn regulated downstream ERK1/2 phosphorylation and CCND1 expression, ultimately promoting tumor progression. In addition, we showed that DDP treatment was much more effective in circFAT1 knockdown tumor cells in vitro and in a xenograft tumor model. Our results indicate that circFAT1 promote tumorigenesis in LUAD through sequestering miR-7, consequently upregulating IRS2-ERK1/2-mediated CCND1 expression, and can be a valuable therapeutic target and an important parameter for precision treatment in LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Adenocarcinoma de Pulmão/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética
12.
Dalton Trans ; 51(24): 9218-9222, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670316

RESUMO

A C,S bonded quasi-two-coordinate Cr(II) complex, Cr(SAr*)2 (HSAr* = HSC6H3-2,6(C6H2-2,4,6-Pri3)2), has been synthesized according to literature precedent. Magnetic measurements, high-frequency/field electron paramagnetic resonance (HF-EPR) experiments and ab initio calculation studies show that the field-induced slow magnetic relaxation behaviour is caused by relatively weak axial magnetic anisotropy.

14.
Cardiovasc Toxicol ; 22(4): 311-325, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35211833

RESUMO

Hypertension is one of the most prevalent cardiovascular disorders worldwide, affecting 1.13 billion people, or 14% of the global population. Hypertension is the single biggest risk factor for cerebrovascular dysfunction. According to the American Heart Association, high blood pressure (BP), especially in middle-aged individuals (~ 40 to 60 years old), is associated with an increased risk of dementia, later in life. Alzheimer's disease and cerebrovascular disease are the two leading causes of dementia, accounting for around 80% of the total cases and usually combining mixed pathologies from both. Little is known regarding how hypertension affects cognitive function, so the impact of its treatment on cognitive impairment has been difficult to assess. The brain renin-angiotensin system (RAS) is essential for BP regulation and overactivity of this system has been established to precede the development and maintenance of hypertension. Angiotensin II (Ang-II), the main peptide within this system, induces vasoconstriction and impairs neuro-vascular coupling by acting on brain Ang-II type 1 receptors (AT1R). In this review, we systemically analyzed the association between RAS and biological mechanisms of cognitive impairment, from the perspective of AT1R located in the central nervous system. Additionally, the possible contribution of brain AT1R to global cognition decline in COVID-19 cases will be discussed as well.


Assuntos
COVID-19 , Disfunção Cognitiva , Hipertensão , Adulto , Angiotensina II/metabolismo , Pressão Sanguínea/fisiologia , COVID-19/complicações , Disfunção Cognitiva/diagnóstico , Humanos , Hipertensão/diagnóstico , Pessoa de Meia-Idade , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina
15.
Small ; 17(20): e2100394, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33870652

RESUMO

In nature, cells rely on a structural framework called the "cytoskeleton" to maintain their shape and polarity. Based on this, herein a new class of cell-mimicking nanomedicine using bionic skeletons constituted by the oligomeric Au(I)-peptide complex is developed. The peptide function of degrading pathological MDM2 and MDMX is used to synthesize an oligomeric Au(I)-PMIV precursor capable of self-assembling into a clustered spherical bionic skeleton. Through coating by erythrocyte membrane, an erythrocyte-mimicking nano-cell (Nery-PMIV) is developed with depressed macrophage uptakes, increased colloidal stability, and prolonged blood circulation. Nery-PMIV potently restores p53 and p73 in vitro and in vivo by degrading MDM2/MDMX. More importantly, Nery-PMIV effectively augments antitumor immunity elicited by anti-PD1 therapy in a murine orthotopic allograft model for LUAD and a humanized patient-derived xenograft (PDX) mouse model for LUAD, while maintaining a favorable safety profile. Taken together, this work not only presents evidence showing that MDM2/MDMX degradation is a potentially viable therapeutic paradigm to synergize anti-PD1 immunotherapy toward LUAD carrying wild-type p53; it also suggests that cell-mimicking nanoparticles with applicable bionic skeletons hold tremendous promise in offering new therapies to revolutionize nanomedicine in the treatment of a myriad of human diseases.


Assuntos
Adenocarcinoma , Proteínas Proto-Oncogênicas c-mdm2 , Animais , Biomimética , Proteínas de Ciclo Celular , Eritrócitos/metabolismo , Imunoterapia , Camundongos , Peptídeos/metabolismo , Comportamento Predatório , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Esqueleto/metabolismo , Proteína Supressora de Tumor p53/metabolismo
16.
Transl Cancer Res ; 10(6): 2790-2800, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35116589

RESUMO

BACKGROUND: A growing number of evidence has revealed the vital role of autophagy in pathological processes of cancer, including gastric cancer (GC). However, many previous studies only focused on exploring single pathway or limited genes of interest in GC, which only reflected partial functions of autophagy. The present study aimed to construct an autophagy-related risk signature for GC. METHODS: Differentially expressed autophagy-related genes (ARGs) in GC and non-tumor samples were screened through The Cancer Genome Atlas (TCGA) database, followed by bioinformatics analysis using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) platforms. Prognosis-related ARGs were generated by univariate and multivariate Cox regression test. RESULTS: A total of seven prognosis-related ARGs (HSPB8, NRG2, GABARAPL1, TMEM74, DLC1, MAP1LC3C and NRG3) were determined to establish a prognostic index (PI) model, which was demonstrated to be an independent prognostic indicator for patients with GC. More importantly, it was successfully validated in an external cohort of patients from the GSE15460 dataset, indicating the useful reproducibility of this signature. In addition, the PI model was associated with immune cell infiltration estimates in GC. CONCLUSIONS: Taken together, the present study suggested that the seven ARGs-related signature could serve as an independent prognostic indicator for patients with GC.

17.
Cancer Manag Res ; 12: 9599-9608, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061645

RESUMO

PURPOSE: The development of esophageal squamous cell carcinoma (ESCC) is a complicated process in which cell adhesion and motility, mediated by integrins, are involved through connecting the cytoskeleton to extracellular matrix. Different mechanisms via which integrin ß6 participates in cancer invasion and metastasis have been described by numerous studies; however, the expression and clinical significance of integrin ß6 in ESCC remain unknown. METHODS: To investigate the differential expression of integrin ß6 in ESCC, qPCR and immunohistochemistry assays were performed in 10 paired human samples. A total of 137 ESCC samples were further enrolled to evaluate the expression levels of integrin ß6 and its endocytic trafficking regulator HS1-associated protein X-1 (HAX-1), followed by the evaluation of their correlation with clinicopathological parameters. The overall survival was analyzed using the Kaplan-Meier method, with significant variables further evaluated by multivariate Cox regression analyses. RESULTS: The expression of integrin ß6 was markedly increased in ESCC compared with matched adjacent normal tissues. Among the ESCC samples, positive expression of integrin ß6 was observed in 41.6% tumors, which was associated with histological differentiation, lymph node metastasis and TNM stage. High expression of HAX-1 was detected in 47.4% tumors, and there was a positive relationship between the expression levels of integrin ß6 and HAX-1. Furthermore, the expression of integrin ß6 and HAX-1 were independent unfavorable indicators for prognosis. Patients with positive integrin ß6 and high HAX-1 expression demonstrated worst outcomes. CONCLUSION: The present findings suggested the predictive value of integrin ß6 and HAX-1 as independent indicators of poor prognosis for patients with ESCC, both of which may contribute to the tumor proliferation and metastasis, leading to ESCC progression. Therefore, combined targeting of integrin ß6 and HAX-1 may provide a potential novel approach for the treatment of ESCC.

18.
Theranostics ; 10(19): 8513-8527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754260

RESUMO

Peptide-derived nanocomposites have been exhibiting fascinating biological advantages, including but not limited to excellent biocompatibility, biological degradation, high targetability and subsequent potent therapeutic efficacy. While some successes have been achieved in the nanoengineering of peptide-based architectures with defined dimensions and medical functions, enormous challenges remain about clinical nano-pharmaceutics of peptides, especially those modulating intracellular protein-protein interactions (PPIs). Methods: We developed a general method to translate intracellular-PPI-targeted peptides into a bioavailable peptide-auric spheroidal nanohybrid (SNH), for which polymeric peptide-Auric precursors [Au1+-S-peptide]n are in-situ reduced on the surface of gold nanoseeds via a simple and mild reaction. As proofs of concept, three cytomembrane-impenetrable peptides with different physicochemical properties were successfully engineered into stable and tumor-specific SNH respectively. Results: To highlight the advantage of SNH, PMI, a hydrophobic and enzyme-intolerant peptide capable of p53 restoration, was selected to challenge the power of SNH in a colon tumor xenografts model. PMI-Au SNH in vivo suppressed tumor growth potently after three administrations: intravenous injection, intraperitoneal injection and gastric perfusion, and maintained a favorable therapeutic safety. Conclusion: This therapeutically feasible strategy of peptide nanoengineering will allow us to fabricate a series of nanomedicines to modulate carcinogenic PPIs that hide and multiply inside cells, and in all likelihood reinvigorate the development of peptide drug against wide varieties of human diseases.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Ouro/química , Peptídeos/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Células HCT116 , Humanos , Injeções Intraperitoneais , Injeções Intravenosas , Nanopartículas Metálicas , Camundongos , Nanocompostos , Peptídeos/química , Peptídeos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oxid Med Cell Longev ; 2020: 8032187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32855767

RESUMO

The metastatic potential of colorectal cancer (CRC) is intensively promoted by the tumor microenvironment (TME) in a paracrine manner. As a pleiotropic inflammatory cytokine, Interleukin-6 (IL-6) is produced and involved in CRC, the same scenario where integrin αvß6 also becomes upregulated. However, the relationship between IL-6 and integrin αvß6 as well as their involvement in the crosstalk between CRC and TME remains largely unclear. In the present study, we demonstrated a positive correlation between the expression of IL-6 and integrin ß6 in CRC samples. The mutually promotive interaction between CRC and TME was further determined by an indirect coculture system. CRC cells could augment the secretion of IL-6 from fibroblasts, which in return induced invasion and integrin ß6 expression of CRC cells. Through the classic IL-6 receptor/STAT-3 signaling pathway, IL-6 mediated the upregulation of integrin ß6, which was involved in the invasion and epithelial-mesenchymal transition of CRC cells induced by IL-6. Taken together, our results reveal a paracrine crosstalk between IL-6 signals originating from the TME and increased the integrin ß6 level of CRC. IL-6 induces CRC invasion via upregulation of integrin ß6 through the IL-6 receptor/STAT-3 signaling pathway. Combined inhibition of IL-6 along with integrin ß6-targeted strategy may indicate new directions for antitumor strategies for CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Cadeias beta de Integrinas/genética , Interleucina-6/metabolismo , Regulação para Cima , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Regulação para Cima/genética
20.
Pathol Res Pract ; 216(7): 153022, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32534716

RESUMO

OBJECTIVE: Integrin αvß6 is associated with an extremely aggressive cancer phenotype. However, little is known about the clinicopathological significance and prognostic value of integrin αvß6 in human hilar cholangiocarcinoma. METHODS: In the present study, bioinformatics analysis demonstrated a significant increase of integrin ß6 gene expression in cholangiocarcinoma tissues compared to non-tumorous tissues, which was further validated in clinical samples through RT-qPCR and western blotting analyses. Integrin αvß6 was observed to be expressed in 48.6% of tumors, and its expression was related to a poor tumor differentiation (p = 0.002), lymph node metastasis (p<0.001) and advanced TNM stage (p=0.001). Furthermore, patients who were αvß6-positive showed a significantly shorter overall survival period than those who were αvß6-negative (p=0.004). Multivariate analysis confirmed that integrin αvß6 was an independent prognostic factor (p=0.002). In addition, loss- and gain-of-function assays showed integrin αvß6 not only played an important role in colony formation, but also protected cholangiocarcinoma cells from cisplatin-induced growth inhibition and apoptosis. ERK/MAPK signaling pathway was involved in integrin αvß6-mediated resistance of cholangiocarcinoma cells to cisplatin. CONCLUSIONS: Taken together, the present findings revealed that integrin αvß6 could serve as a potential prognostic predictor and contribute to cisplatin resistance, which might prove to be a promising target candidate for the clinical intervention of human hilar cholangiocarcinoma.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/análise , Integrinas/metabolismo , Tumor de Klatskin/patologia , Idoso , Antígenos de Neoplasias/genética , Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Integrinas/genética , Masculino , Pessoa de Meia-Idade , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA