Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700011

RESUMO

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , AVC Isquêmico/fisiopatologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Masculino , Camundongos Knockout , Camundongos , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/patologia , Sistema Nervoso Simpático/fisiopatologia , Miocárdio/patologia , Miocárdio/metabolismo , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Cardiopatias/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/deficiência
2.
Chem Biol Interact ; 395: 111010, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679114

RESUMO

The incidence and mortality rate of myocardial infarction are increasing per year in China. The polarization of macrophages towards the classically activated macrophages (M1) phenotype is of utmost importance in the progression of inflammatory stress subsequent to myocardial infarction. Poly (ADP-ribose) polymerase 1(PARP1) is the ubiquitous and best characterized member of the PARP family, which has been reported to support macrophage polarization towards the pro-inflammatory phenotype. Yet, the role of PARP1 in myocardial ischemic injury remains to be elucidated. Here, we demonstrated that a myocardial infarction mouse model induced cardiac damage characterized by cardiac dysfunction and increased PARP1 expression in cardiac macrophages. Inhibition of PARP1 by the PJ34 inhibitors could effectively alleviate M1 macrophage polarization, reduce infarction size, decrease inflammation and rescue the cardiac function post-MI in mice. Mechanistically, the suppression of PARP1 increase NLRC5 gene expression, and thus inhibits the NF-κB pathway, thereby decreasing the production of inflammatory cytokines such as IL-1ß and TNF-α. Inhibition of NLRC5 promote infection by effectively abolishing the influence of this mechanism discussed above. Interestingly, inhibition of NLRC5 promotes cardiac macrophage polarization toward an M1 phenotype but without having major effects on M2 macrophages. Our results demonstrate that inhibition of PARP1 increased NLRC5 gene expression, thereby suppressing M1 polarization, improving cardiac function, decreasing infarct area and attenuating inflammatory injury. The aforementioned findings provide new insights into the proinflammatory mechanisms that drive macrophage polarization following myocardial infarction, thereby introducing novel potential targets for future therapeutic interventions in individuals affected by myocardial infarction.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Infarto do Miocárdio , NF-kappa B , Poli(ADP-Ribose) Polimerase-1 , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , NF-kappa B/metabolismo , Fenantrenos/farmacologia , Fenantrenos/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Regulação para Cima/efeitos dos fármacos
3.
Exp Neurol ; 376: 114773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599368

RESUMO

BACKGROUND: Arrhythmia is the most common cardiac complication after ischemic stroke. Connexin 40 is the staple component of gap junctions, which influences the propagation of cardiac electrical signals in the sinoatrial node. However, the role of connexin 40 in post-stroke arrhythmia remains unclear. METHODS: In this study, a permanent middle cerebral artery occlusion model was used to simulate the occurrence of an ischemic stroke. Subsequently, an electrocardiogram was utilized to record and assess variations in electrocardiogram measures. In addition, optical tissue clearing and whole-mount immunofluorescence staining were used to confirm the anatomical localization of the sinoatrial node, and the sinoatrial node tissue was collected for RNA sequencing to screen for potential pathological mechanisms. Lastly, the rAAV9-Gja5 virus was injected with ultrasound guidance into the heart to increase Cx40 expression in the sinoatrial node. RESULTS: We demonstrated that the mice suffering from a permanent middle cerebral artery occlusion displayed significant arrhythmia, including atrial fibrillation, premature ventricular contractions, atrioventricular block, and abnormal electrocardiogram parameters. Of note, we observed a decrease in connexin 40 expression within the sinoatrial node after the ischemic stroke via RNA sequencing and western blot. Furthermore, rAAV9-Gja5 treatment ameliorated the occurrence of arrhythmia following stroke. CONCLUSIONS: In conclusion, decreased connexin 40 expression in the sinoatrial node contributed to the ischemic stroke-induced cardiac arrhythmia. Therefore, enhancing connexin 40 expression holds promise as a potential therapeutic approach for ischemic stroke-induced arrhythmia.


Assuntos
Arritmias Cardíacas , Proteína alfa-5 de Junções Comunicantes , AVC Isquêmico , Nó Sinoatrial , Animais , Camundongos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/genética , Conexinas/genética , Conexinas/metabolismo , Proteína alfa-5 de Junções Comunicantes/genética , Proteína alfa-5 de Junções Comunicantes/metabolismo , AVC Isquêmico/complicações , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Nó Sinoatrial/metabolismo , Nó Sinoatrial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA