Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (203)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314826

RESUMO

Carotid arteries are major blood vessels in the neck that supply blood and oxygen to the brain, but carotid stenosis occurs when carotid arteries are clogged by plaque. Revealing the cellular composition of the carotid artery at the single-cell level is essential for treating carotid atherosclerosis. However, there is no ready-to-use protocol for the preparation of single-cell suspensions from carotid arteries. To obtain a suitable protocol for the dissociation of normal carotid arteries at the single-cell level with less damage to cells, we designed a two-step digestion method by integrating the digestion process of collagenase/DNase and trypsin. Acridine orange/propidium iodide (AO/PI) dual-fluorescence counting was used to detect cell viability and concentration, and it was found that the single-cell suspension satisfied the requirements for single-cell sequencing, with the viability of cells over 85% and a high cell concentration. After single-cell data processing, a median of ~2500 transcripts per cell were detected in each carotid artery cell. Notably, a variety of cell types of the normal carotid artery, including vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells (ECs), and macrophages and dendritic cells (Mφ/DCs), were concurrently detectable. This protocol may be applied to prepare a single-cell suspension of blood vessels from other tissues with appropriate modifications.


Assuntos
Doenças das Artérias Carótidas , Placa Aterosclerótica , Camundongos , Animais , Células Endoteliais/metabolismo , Artérias Carótidas , Doenças das Artérias Carótidas/metabolismo , Artéria Carótida Primitiva/metabolismo , Placa Aterosclerótica/metabolismo
3.
Mol Metab ; 70: 101698, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842496

RESUMO

OBJECTIVE: Obesity and related diseases are becoming a growing risk for public health around the world due to the westernized lifestyle. Sema7A, an axonal guidance molecule, has been known to play a role in neurite growth, bone formation, and immune regulation. Whether Sema7A participates in obesity and metabolic diseases is unknown. As several SNPs in SEMA7A and its receptors were found to correlate with BMI and metabolic parameters in the human population, we investigated the potential role of Sema7A in obesity and hepatic steatosis. METHODS: GWAS and GEPIA database was used to analyze SNPs in SEMA7A and the correlation of Sema7A expression with lipid metabolism related genes. Sema7A-/- mice and recombinant Sema7A (rSema7A) were used to study the role of Sema7A in HFD-induced obesity and hepatic steatosis. Adipose tissue-derived mesenchymal stem cells (ADSCs) were used to examine the role of Sema7A in adipogenesis, lipogenesis and downstream signaling. RESULTS: Deletion of Sema7A aggravated HFD-induced obesity. Sema7A deletion enhanced adipogenesis in both subcutaneous and visceral ADSCs, while the addition of rSema7A inhibited adipogenesis of ADSCs and lipogenesis of differentiated mature adipocytes. Sema7A inhibits adipo/lipogenesis potentially through its receptor integrin ß1 and downstream FAK signaling. Importantly, administration of rSema7A had protective effects against diet-induced obesity in mice. In addition, deletion of Sema7A led to increased hepatic steatosis and insulin resistance in mice. CONCLUSIONS: Our findings reveal a novel inhibitory role of Sema7A in obesity and hepatic steatosis, providing a potential new therapeutic target for obesity and metabolic diseases.


Assuntos
Fígado Gorduroso , Semaforinas , Animais , Camundongos , Antígenos CD/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/uso terapêutico , Metabolismo dos Lipídeos , Lipogênese , Obesidade/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Semaforinas/uso terapêutico
4.
J Cell Mol Med ; 26(12): 3446-3459, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35527426

RESUMO

The differences in plaque histology between symptomatic and asymptomatic patients have been widely accepted. Whether there is a heterogeneity of cells between symptomatic and asymptomatic plaques remains largely unclear. To reveal the potential heterogeneity within different plaques, which may contribute to different stroke incidences, we obtained the scRNA-seq data from symptomatic and asymptomatic patients and identified eight cell types present in plaques. Further analysis of endothelial cells (ECs) revealed three distinct EC subpopulations appeared to be endowed with specific biological functions such as antigen processing and presentation, cell adhesion, and smooth muscle cell proliferation. Of note, the differentially expressed genes of the EC 2 subpopulation showed that the genes involved in cell adhesion were up-regulated in asymptomatic plaques compared to symptomatic plaques. Integrating the data of intraplaque haemorrhage and plaque stability, the 5th top-enriched biological process was cell adhesion in the stable or non-haemorrhaged plaques compared to unstable plaques or haemorrhaged plaques. Among these cell adhesion-related genes, the intersection gene AOC3 may play a vital role in plaque haemorrhage and plaque stability. Targeting cell adhesion and the specialized genes may provide potential new therapeutic directions to prevent asymptomatic patients from stroke.


Assuntos
Placa Aterosclerótica , Acidente Vascular Cerebral , Artérias Carótidas/patologia , Células Endoteliais , Humanos , Incidência , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Acidente Vascular Cerebral/patologia
5.
Cell Death Discov ; 7(1): 180, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34282126

RESUMO

Disturbed blood flow (d-flow) has been known to induce changes of the cells in the arterial wall, increasing the risk of atherosclerosis. However, the heterogeneity of the vascular cell populations under d-flow remains less understood. To generate d-flow in vivo, partial carotid artery ligation (PCL) was performed. Seven days after ligation, single-cell RNA sequencing of nine left carotid arteries (LCA) from the PCL group (10,262 cells) or control group (14,580 cells) was applied and a single-cell atlas of gene expression was constructed. The integrated analysis identified 15 distinct carotid cell clusters, including 10 d-flow-relevant subpopulations. Among endothelial cells, at least four subpopulations were identified, including Klk8hi ECs, Lrp1hi ECs, Dkk2hi ECs, and Cd36hi ECs. Analysis of GSVA and single-cell trajectories indicated that the previously undescribed Dkk2hi ECs subpopulation was mechanosensitive and potentially transformed from Klk8hi ECs under d-flow. D-flow-induced Spp1hi VSMCs subpopulation that appeared to be endowed with osteoblast differentiation, suggesting a role in arterial stiffness. Among the infiltrating cell subpopulations, Trem2hi Mφ, Birc5hi Mφ, DCs, CD4+ T cells, CXCR6+ T cells, NK cells, and granulocytes were identified under d-flow. Of note, the novel Birc5hi Mφ was identified as a potential contributor to the accumulation of macrophages in atherosclerosis. Finally, Dkk2hi ECs, and Cd36hi ECs were also found in the proatherosclerotic area of the aorta where the d-flow occurs. In conclusion, we presented a comprehensive single-cell atlas of all cells in the carotid artery under d-flow, identified previously unrecognized cell subpopulations and their gene expression signatures, and suggested their specialized functions.

6.
Cell Death Dis ; 11(8): 695, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32826874

RESUMO

Endothelial to mesenchymal transition (EndMT) is an important pathological change in many diseases. Semaphorin7A (Sema7A) has been reported to regulate nerve and vessel homeostasis, but its role in EndMT remains unclear. Here we investigate the effect of Sema7A on EndMT and the underlying mechanism. Sema7A-overexpressed human umbilical vein endothelial cells (Sema7A-HUVECs) were generated and showed lower levels of endothelial cell markers and higher levels of mesenchymal cell markers indicating the occurrence of EndMT. RNA-sequencing analysis showed a total of 1168 upregulated genes and 886 downregulated genes. Among them, most of the molecules associated with EndMT were upregulated in Sema7A-HUVECs. Mechanistically, Sema7A-HUVECs showed a higher TGF-ß2 expression and activated TGF-ß/Smad Signaling. Importantly, Sema7A overexpression upregulated activating transcription factor 3 (ATF3) that was found to selectively bind the promotor region of TGF-ß2, but not TGF-ß1, promoting TGF-ß2 transcription, which was further confirmed by ATF3-siRNA knockdown approach. Blocking ß1 integrin, a known Sema7A receptor, alleviated the expression of ATF3, TGF-ß2, and EndMT in Sema7A-overexpressed HUVECs, implying a role of ß1 integrin/ATF3/TGF-ß2 axis in mediating Sema7A-induced EndMT. Using Sema7A-deficient mice and the partial carotid artery ligation (PCL) model, we showed that Sema7A deletion attenuated EndMT induced by blood flow disturbance in vivo. In conclusion, Sema7A promotes TGF-ß2 secretion by upregulating transcription factor ATF3 in a ß1 integrin-dependent manner, and thus facilitates EndMT through TGF/Smad signaling, implying Sema7A as a potential therapeutic target for EndMT-related vascular diseases.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Antígenos CD/genética , Transição Epitelial-Mesenquimal/fisiologia , Semaforinas/genética , Fator 3 Ativador da Transcrição/fisiologia , Animais , Antígenos CD/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina beta1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Semaforinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 38(2): 335-343, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29269512

RESUMO

OBJECTIVE: Accumulating evidence suggests a role of semaphorins in vascular homeostasis. Here, we investigate the role of Sema7A (semaphorin 7A) in atherosclerosis and its underlying mechanism. APPROACH AND RESULTS: Using genetically engineered Sema7A-/-ApoE-/- mice, we showed that deletion of Sema7A attenuates atherosclerotic plaque formation primarily in the aorta of ApoE-/- mice on a high-fat diet. A higher level of Sema7A in the atheroprone lesser curvature suggests a correlation of Sema7A with disturbed flow. This notion is supported by elevated Sema7A expression in human umbilical venous endothelial cells either subjected to oscillatory shear stress or treated with the PKA (protein kinase A)/CREB (cAMP response element-binding protein) inhibitor H89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide·2HCl hydrate). Further studies using the partial carotid artery ligation model showed that disturbed flow in the left carotid artery of Sema7A+/+ApoE-/- mice promoted the expression of endothelial Sema7A and cell adhesion molecules, leukocyte adhesion, and plaque formation, whereas such changes were attenuated in Sema7A-/-ApoE-/- mice. Further studies showed that blockage of ß1 integrin, a known Sema7A receptor, or inhibition of FAK (focal adhesion kinase), MEK1/2 (mitogen-activated protein kinase kinase 1/2), or NF-κB (nuclear factor-κB) significantly reduced the expression of cell adhesion molecules and THP-1 (human acute monocytic leukemia cell line) monocyte adhesion in Sema7A-overexpressing human umbilical venous endothelial cells. Studies using chimeric mice suggest that vascular, most likely endothelial, Sema7A plays a major role in atherogenesis. CONCLUSIONS: Our findings indicate a significant role of Sema7A in atherosclerosis by mediating endothelial dysfunction in a ß1 integrin-dependent manner.


Assuntos
Antígenos CD/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Doenças das Artérias Carótidas/metabolismo , Células Endoteliais/metabolismo , Integrina beta1/metabolismo , Mecanotransdução Celular , Semaforinas/metabolismo , Animais , Antígenos CD/genética , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Migração e Rolagem de Leucócitos , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Placa Aterosclerótica , Fluxo Sanguíneo Regional , Semaforinas/deficiência , Semaforinas/genética , Células THP-1 , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA