Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(9): e1012542, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39255299

RESUMO

Citrus huanglongbing (HLB), which is caused by the phloem-colonizing bacteria Candidatus Liberibacter asiaticus (CLas), poses a significant threat to citrus production worldwide. The pathogenicity mechanism of HLB remains poorly understood. SEC-dependent effectors (SDEs) have been suggested to play critical roles in the interaction between citrus and CLas. Here, we explored the function of CLIBASIA_05320 (SDE19), a core SDE from CLas, and its interaction with its host target. Our data revealed that SDE19 is expressed at higher level during infection of citrus than that during infection of the Asian citrus psyllid. Subcellular localization assays showed that SDE19 is localized in the nucleus and cytoplasm and is capable of moving from cell to cell in Nicotiana benthamiana. To investigate whether SDE19 facilitates pathogen infection, we generated transgenic Arabidopsis thaliana and citrus plants overexpressing SDE19. Transgenic A. thaliana and citrus plants were more susceptible to Pseudomonas syringae pv. tomato (Pst) and Xanthomonas citri subsp. citri (Xcc), respectively. In addition, RNA-seq analysis demonstrated that overexpression of SDE19 resulted in a reprogramming of expression of genes related to biotic stimulus responses. SDE19 interacts with Citrus sinensis Sec12, a guanine nucleotide exchange factor responsible for the assembly of plant COPII (coat protein II)-coated vesicles, which mediate vesicle trafficking from the ER to the Golgi. SDE19 colocalizes with Sec12 in the ER by binding to its N-terminal catalytic region, affecting the stability of Sec12 through the 26S proteasome. This interaction hinders the secretion of apoplastic defense-related proteins such as PR1, P69B, GmGIP1, and RCR3. Furthermore, the secretion of PR1 and callose deposition is decreased in SDE19-transgenic A. thaliana. Taken together, SDE19 is a novel virulent SDE secreted by CLas that interacts with Sec12 to disrupt vesicle trafficking, inhibit defense-related proteins secretion, and promote bacterial infection. This study sheds light on how CLas manipulates the host vesicle trafficking pathway to suppress the secretion of defense-related proteins and interfere with plant immunity.

2.
Front Plant Sci ; 15: 1369883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601304

RESUMO

Introduction: Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in maintaining heavy metal balance and responding to both biotic and abiotic stresses in vascular plants. However, the role of HIPPs in the response to Huanglongbing (HLB), a harmful disease of citrus caused by the phloem-colonizing bacterium Candidatus Liberibacter asiaticus (CLas), has not been examined. Methods and results: In this study, a total of 26 HIPP genes were identified in Citrus sinensis, and they were grouped into 5 clades. The CsHIPP genes are distributed on 8 chromosomes and exhibited considerable synteny with HIPPs found in Arabidopsis thaliana. Additionally, we analyzed the gene structure, conserved motifs and domains of the CsHIPPs. Various cis-acting elements related to plant hormones and stress responses were identified in the promoters of CsHIPPs. Public transcriptome data and RT-qPCR analysis showed that the expression level of CsHIPP03 was significantly reduced in samples infected by CLas and Xanthomonas citri ssp. citri (Xcc). Furthermore, silencing the homologous gene of CsHIPP03 in Nicotiana benthamiana increased the disease resistance of plants to bacteria. Discussion: Our results provide a basis for functional studies of HIPP gene family in C. sinensis, highlighting their functions in bacterial resistance, and improve our understanding to the susceptibility mechanism of HLB.

3.
Protoplasma ; 261(3): 499-512, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38092896

RESUMO

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is a devastating immune-mediated disorder that has a detrimental effect on the citrus industry, with the distinguishing feature being an eruption of reactive oxygen species (ROS). This study explored the alterations in antioxidant enzyme activity, transcriptome, and RNA editing events of organelles in C. sinensis during CLas infection. Results indicated that there were fluctuations in the performance of antioxidant enzymes, such as ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POD), and superoxide dismutase (SOD), in plants affected by HLB. Transcriptome analysis revealed 3604 genes with altered expression patterns between CLas-infected and healthy samples, including those associated with photosynthesis, biotic interactions, and phytohormones. Samples infected with CLas showed a decrease in the expression of most genes associated with photosynthesis and gibberellin metabolism. It was discovered that RNA editing frequency and the expression level of various genes in the chloroplast and mitochondrion genomes were affected by CLas infection. Our findings provide insights into the inhibition of photosynthesis, gibberellin metabolism, and antioxidant enzymes during CLas infection in C. sinensis.


Assuntos
Citrus sinensis , Citrus , Liberibacter , Rhizobiaceae , Citrus sinensis/genética , Antioxidantes/farmacologia , Giberelinas/farmacologia , Transcriptoma/genética , Perfilação da Expressão Gênica , Doenças das Plantas
4.
Micromachines (Basel) ; 13(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35630131

RESUMO

This study is aimed at addressing the urgent demand for ultra-micro-precision dispensing technology in high-performance micro- and nanometer encapsulation, connection, and assembly manufacturing, considering the great influence of colloid viscosity and surface tension on the dispensing process in micro- and nanometer scale. According to the principle of liquid transfer, a method of adhesive transfer that can realize fL-pL levels is studied in this paper. A mathematical model describing the initial droplet volume and the transfer droplet volume was established, and the factors affecting the transfer process of adhesive were analyzed by the model. The theoretical model of the transfer droplet volume was verified by a 3D scanning method. The relationships between the transfer droplet volume and the initial droplet volume, stay time, initial distance, and stretching speed were systematically analyzed by a single-factor experiment, and the adhesive transfer rate was calculated. Combined with trajectory planning, continuous automatic dispensing experiments with different patterns were developed, and the problems of the transfer droplet size, appearance quality, and position accuracy were analyzed comprehensively. The results show that the average relative deviation of the transfer droplet lattice position obtained by the dispensing method in this paper was 6.2%. The minimum radius of the transfer droplet was 11.7 µm, and the minimum volume of the transfer droplet was 573.3 fL. Furthermore, microporous encapsulation was realized using the method of ultra-micro-dispensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA