Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Asian Nat Prod Res ; : 1-10, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634704

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype with poor prognosis of breast cancer. Thiostrepton exerts anti-tumor activities against several cancers including TNBC. Herein we discussed the new molecular mechanisms of thiostrepton in TNBC. Thiostrepton inhibited MDA-MB-231 cell viability, accompanied by a decrease of c-FLIP and p-SMAD2/3. c-FLIP overexpression reduced the sensitivity of MDA-MB-231 cells to thiostrepton, while SMAD2/3 knockdown increased the sensitivity of MDA-MB-231 cells to thiostrepton. Moreover, c-FLIP overexpression significantly increased the expression and phosphorylation of SMAD2/3 proteins and vice versa. In conclusion, our study reveals c-FLIP/SMAD2/3 signaling pathway as a novel mechanism of antitumor activity of thiostrepton.

2.
Curr Mol Pharmacol ; 16(7): 771-786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36411574

RESUMO

BACKGROUND: Fatty acid synthase (FASN) is generally over-expressed in human tumor tissues and catalyzes de novo synthesis of fatty acids on which tumor cells depend. Bestatin, an inhibitor of aminopeptidase/CD13, is one of the dipeptide substrates for the human oligopeptide transporter 1 (PEPT1). OBJECTIVES: In the current study, we aimed to uncover the role of FASN inhibitors in bestatininduced tumor cell apoptosis and the underlying mechanism, extending our understanding of the correlations between FASN and PEPT1 in cancer and providing a new strategy for tumor targeted treatment. METHODS: Cerulenin, orlistat and siRNAs were applied to inhibit FASN. The cell viability and apoptosis were assessed with MTT (thiazolyl blue tetrazolium bromide) assays and annexin VFITC/ PI staining with flow cytometry analysis. Western blot and qRT-PCR analysis were used to detect the protein levels and mRNA levels of the indicated genes in tumor cells, respectively. Protein degradation or stability was examined with cycloheximide chase assays. CD13 activity was detected by gelatin zymography. The HT1080 and C26 xenografts models were conducted to assess the efficacy in vivo. RESULTS: In the current study, we found that inhibiting FASN by cerulenin and orlistat both augmented the effects of bestatin in decreasing tumor cell viability. Cerulenin increased the apoptosis rates and enhanced the cleavage of PARP caused by bestatin. Furthermore, cerulenin, orlistat and siFASNs markedly elevated PEPT1 protein levels. Indeed, cerulenin induced the upregulation of PEPT1 mRNA expression rather than affecting the protein level after the cells were treated with CHX. And Gly-Sar, a typical competitive substrate of PEPT1, could attenuate the augment of bestatin-induced cell killing by cerulenin. Moreover, synergistic restrain of tumor growth accompanied by a reduction of Ki-67 and increment of TUNEL was significantly achieved in the xenograft models. Interestingly, no clear correlation was observed between the CD13 with FASN and/or PEPT1 in tumor cells. CONCLUSION: FASN inhibitors facilitate tumor cells susceptible to bestatin-induced apoptosis involving the up-regulation of PEPT1 at the mRNA translation level and the transport of bestatin by PEPT1, emerging as a promising strategy for tumor targeted therapy.


Assuntos
Cerulenina , Neoplasias , Humanos , Cerulenina/farmacologia , Orlistate/farmacologia , Ácido Graxo Sintases , Neoplasias/tratamento farmacológico , Apoptose , RNA Mensageiro/genética , Linhagem Celular Tumoral , Ácido Graxo Sintase Tipo I
3.
Acta Pharmacol Sin ; 43(11): 2956-2966, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35422085

RESUMO

The forkhead box M1 (FoxM1) protein, a transcription factor, plays critical roles in regulating tumor growth and drug resistance, while cellular FLICE-inhibitory protein (c-FLIP), an anti-apoptotic regulator, is involved in the ubiquitin-proteasome pathway. In this study, we investigated the effects of c-FLIP on the expression and ubiquitination levels of FoxM1 along with drug susceptibility in non-small-cell lung cancer (NSCLC) cells. We first showed that the expression levels of FoxM1 and c-FLIP were increased and positively correlated (R2 = 0.1106, P < 0.0001) in 90 NSCLC samples. The survival data from prognostic analysis demonstrated that high expression of c-FLIP and/or FoxM1 was related to poor prognosis in NSCLC patients and that the combination of FoxM1 and c-FLIP could be a more precise prognostic biomarker than either alone. Then, we explored the functions of c-FLIP/FoxM1 in drug resistance in NSCLC cell lines and a xenograft mouse model in vivo. We showed that c-FLIP stabilized FoxM1 by inhibiting its ubiquitination, thus upregulated the expression of FoxM1 at post-transcriptional level. In addition, a positive feedback loop composed of FoxM1, ß-catenin and p65 also participated in c-FLIP-FoxM1 axis. We revealed that c-FLIP promoted the resistance of NSCLC cells to thiostrepton and osimertinib by upregulating FoxM1. Taken together, these results reveal a new mechanism by which c-FLIP regulates FoxM1 and the function of this interaction in the development of thiostrepton and osimertinib resistance. This study provides experimental evidence for the potential therapeutic benefit of targeting the c-FLIP-FoxM1 axis for lung cancer treatment.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Tioestreptona/farmacologia , Tioestreptona/uso terapêutico , Tioestreptona/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
4.
J Control Release ; 337: 417-430, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324896

RESUMO

The majority (~80%) of patients with cancer do not derive clinical benefit from current immunotherapy, largely due to attenuation of immune responses imposed by robust immunosuppression at tumor sites. Here, a cell-based tumor antigen delivery strategy was developed to boost tumor-specific immunity. Notably, the platform constructing ferric oxide nanoparticle-trained macrophages loading tumor antigens (MFe-N) acquired an immunostimulatory program and functioned as the tumoritropic "cytokine-microfactories" to sustainably produce high levels of multiple therapeutic cytokines (GM-CSF, TNFα, and MIP-1α), which are important in activation of immune cells with antitumor potential. Indeed, MFe-N markedly enhanced recruitment of the professional antigen-presenting cells, dendritic cells (DCs), to the tumor sites of an established B16F10 mouse melanoma model. Subsequently, MFe-N effectively delivered tumor antigens to DCs by gap junction-mediated cell-to-cell transmission. And this trafficking was critical for DC maturation to augment antitumor T-cell responses. Simultaneously, the "cytokine-microfactories" elicited high production of the tumoricidal effectors, and in turn blunted the pro-angiogenic activity of tumor-associated macrophages, resulting in conversion of the tumor-supporting milieu to a tumoricidal function that favored infiltration of antitumor T-cells. The findings provided a novel "cytokine-microfactories" harnessing effective delivery of tumor antigens and production of therapeutic cytokines to robustly promote antigen presentation and reshape the tumor immune milieu for priming antitumor immunity. This can enhance existing T-cell mediated immunotherapeutic potency and extend the curative potential immunotherapy to a broader range of patients.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Animais , Apresentação de Antígeno , Citocinas , Células Dendríticas , Junções Comunicantes , Humanos , Imunoterapia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...