Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(7): 073701, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340460

RESUMO

A novel method for the in situ visualization and profilometry of a plasma-facing surface is demonstrated using a long-distance microscope. The technique provides valuable in situ monitoring of the microscopic temporal and morphological evolution of a material surface subject to plasma-surface interactions, such as ion-induced sputter erosion. Focus variation of image stacks enables height surface profilometry, which allows a depth of field beyond the limits associated with high magnification. As a demonstration of this capability, the erosion of a volumetrically featured aluminum foam is quantified during ion-bombardment in a low-temperature argon plasma where the electron temperature is ∼7 eV and the plasma is biased relative to the target surface such that ions impinge at ∼300 eV. Three-dimensional height maps are reconstructed from the images captured with a long-distance microscope with an x-y resolution of 3 × 3 µm2 and a focus-variation resolution based on the motor step-size of 20 µm. The time-resolved height maps show a total surface recession of 730 µm and significant ligament thinning over the course of 330 min of plasma exposure. This technique can be used for developing plasma-facing components for a wide range of plasma devices for applications such as propulsion, manufacturing, hypersonics, and fusion.

2.
Phys Rev Lett ; 126(3): 035001, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543949

RESUMO

Aluminum microfoams are found to exhibit persistent sputtering yield reductions of 40%-80% compared to a flat aluminum surface under 100 to 300 eV argon plasma bombardment. An analytical model reveals a strong dependency of the yield on the foam geometry and plasma sheath. For foam pore sizes near or larger than the sheath thickness, the plasma infuses the foam and transitions the plasma-surface interactions from superficial to volumetric phenomena. By defining a plasma infusion parameter, the sputtering behavior of foams is shown to be separated into the plasma-facing and plasma-infused regimes. While plasma infusion leads to a larger effective sputtering area, geometric recapture of ejected particles facilitates an overall reduction in yield. For a given level of plasma infusion, the reductions in normalized yield are more pronounced at lower ion energies since angular sputtering effects enable more effective geometric recapture of sputterants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA