Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Regen Biomater ; 11: rbae048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939044

RESUMO

Tissue regeneration is a hot topic in the field of biomedical research in this century. Material composition, surface topology, light, ultrasonic, electric field and magnetic fields (MFs) all have important effects on the regeneration process. Among them, MFs can provide nearly non-invasive signal transmission within biological tissues, and magnetic materials can convert MFs into a series of signals related to biological processes, such as mechanical force, magnetic heat, drug release, etc. By adjusting the MFs and magnetic materials, desired cellular or molecular-level responses can be achieved to promote better tissue regeneration. This review summarizes the definition, classification and latest progress of MFs and magnetic materials in tissue engineering. It also explores the differences and potential applications of MFs in different tissue cells, aiming to connect the applications of magnetism in various subfields of tissue engineering and provide new insights for the use of magnetism in tissue regeneration.

2.
Colloids Surf B Biointerfaces ; 239: 113967, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761494

RESUMO

The re-bridging of the deficient nerve is the main problem to be solved after the functional impairment of the peripheral nerve. In this study, a directionally aligned polycaprolactone/triiron tetraoxide (PCL/Fe3O4) fiber scaffolds were firstly prepared by electrospinning technique, and further then grafted with IKVAV peptide for regulating DRG growth and axon extension in peripheral nerve regeneration. The results showed that oriented aligned magnetic PCL/Fe3O4 composite scaffolds were successfully prepared by electrospinning technique and possessed good mechanical properties and magnetic responsiveness. The PCL/Fe3O4 scaffolds containing different Fe3O4 concentrations were free of cytotoxicity, indicating the good biocompatibility and low cytotoxicity of the scaffolds. The IKVAV-functionalized PCL/Fe3O4 scaffolds were able to guide and promote the directional extension of axons, the application of external magnetic field and the grafting of IKVAV peptides significantly further promoted the growth of DRGs and axons. The ELISA test results showed that the AP-10 F group scaffolds promoted the secretion of nerve growth factor (NGF) from DRG under a static magnetic field (SMF), thus promoting the growth and extension of axons. Importantly, the IKVAV-functionalized PCL/Fe3O4 scaffolds could significantly up-regulate the expression of Cntn2, PCNA, Sox10 and Isca1 genes related to adhesion, proliferation and magnetic receptor function under the stimulation of SMF. Therefore, IKVAV-functionalized PCL/Fe3O4 composite oriented scaffolds have potential applications in neural tissue engineering.


Assuntos
Poliésteres , Alicerces Teciduais , Animais , Poliésteres/química , Ratos , Alicerces Teciduais/química , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/química , Regeneração Nervosa/efeitos dos fármacos , Campos Magnéticos , Compostos Férricos/química , Compostos Férricos/farmacologia , Ratos Sprague-Dawley , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células PC12
3.
Int J Biol Macromol ; 271(Pt 2): 132672, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810855

RESUMO

Wound infection not only hinders the time sequence of tissue repair, but also may lead to serious complications. Multifunctional wound dressings with biocompatibility, excellent mechanical properties and antibacterial properties can promote wound healing during skin infection and reduce the use of antibiotics. In this study, a multifunctional dual-network antibacterial hydrogel was constructed based on the electrostatic interaction of two polyelectrolytes, hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and sodium alginate (SA). Attributing to the suitable physical crosslinking between HACC and SA, the hydrogel not only has good biocompatibility, mechanical property, but also has broad-spectrum antibacterial properties. In vivo results showed that the hydrogel could regulate M2 polarization, promote early vascular regeneration, and create a good microenvironment for wound healing. Therefore, this hydrogel is an effective multifunctional wound dressing. Consequently, we propose a novel hydrogel with combined elements to expedite the intricate repair of wound infection.


Assuntos
Alginatos , Antibacterianos , Quitosana , Hidrogéis , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Quitosana/farmacologia , Quitosana/análogos & derivados , Animais , Alginatos/química , Alginatos/farmacologia , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Infecções Bacterianas/tratamento farmacológico , Masculino , Bandagens , Staphylococcus aureus/efeitos dos fármacos
4.
Int J Biol Macromol ; 271(Pt 1): 132394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761905

RESUMO

The treatment of peripheral nerve injury is a clinical challenge that tremendously affected the patients' health and life. Anisotropic topographies and electric cues can simulate the regenerative microenvironment of nerve from physical and biological aspects, which show promising application in nerve regeneration. However, most studies just unilaterally emphasize the effect of sole topological- or electric- cue on nerve regeneration, while rarely considering the synergistic function of both cues simultaneously. In this study, a biomimetic-inspired piezoelectric topological ovalbumin/BaTiO3 scaffold that can provide non-invasive electrical stimulation in situ was constructed by combining piezoelectric BaTiO3 nanoparticles and surface microtopography. The results showed that the incorporation of piezoelectric nanoparticles could improve the mechanical properties of the scaffolds, and the piezoelectric output of the scaffolds after polarization was significantly increased. Biological evaluation revealed that the piezoelectric topological scaffolds could regulate the orientation growth of SCs, promote axon elongation of DRG, and upregulate the genes expression referring to myelination and axon growth, thus rapidly integrated chemical-mechanical signals and transmitted them for effectively promoting neuronal myelination, which was closely related to peripheral neurogenesis. The study suggests that the anisotropic surface topology combined with non-invasive electronic stimulation of the ovalbumin/BaTiO3 scaffolds possess a promising application prospect in the repair and regeneration of peripheral nerve injury.


Assuntos
Compostos de Bário , Ovalbumina , Células de Schwann , Alicerces Teciduais , Titânio , Alicerces Teciduais/química , Animais , Titânio/química , Compostos de Bário/química , Anisotropia , Gânglios Espinais/citologia , Ratos , Materiais Biomiméticos/química , Regeneração Nervosa
6.
RSC Adv ; 14(16): 10874-10883, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577422

RESUMO

Antibacterial hydrogels have gained considerable attention for soft tissue repair, particularly in preventing infections associated with wound healing. However, developing an antibacterial hydrogel that simultaneously possesses excellent cell affinity and controlled release of metal ions remains challenging. This study introduces an antibacterial hydrogel based on alginate modified with bisphosphonate, forming a coordination complex with magnesium ions. The hydrogel, through an interpenetrating network with silk fibroin, effectively controls the release of magnesium ions and enhances strain resistance. The Alg-Mg/SF hydrogel not only demonstrates outstanding biocompatibility and broad-spectrum antibacterial properties but also stimulates macrophages to secrete anti-inflammatory factors. This advanced Alg-Mg/SF hydrogel provides a convenient therapeutic approach for chronic wound management, showcasing its potential applications in wound healing and other relevant biomedical fields.

7.
Int J Biol Macromol ; 268(Pt 2): 131827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670204

RESUMO

Cell culturing is a cornerstone of tissue engineering, playing a crucial role in tissue regeneration, drug screening, and the study of disease mechanisms. Among various culturing techniques, 3D culture systems, particularly those utilizing suspended fiber scaffolds, offer a more physiologically relevant environment than traditional 2D monolayer cultures. These 3D scaffolds enhance cell growth, differentiation, and proliferation by mimicking the in vivo cellular milieu. This review focuses on the critical role of suspended fiber scaffolds in tissue engineering. We compare the effectiveness of 3D suspended fiber scaffolds with 2D culture systems, discussing their respective benefits and limitations in the context of tissue regeneration. Furthermore, we explore the preparation methods of suspended fiber scaffolds and their potential applications. The review concludes by considering future research directions for optimizing suspended fiber scaffolds to address specific challenges in tissue regeneration, underscoring their significant promise in advancing tissue engineering and regenerative medicine.


Assuntos
Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Humanos , Engenharia Tecidual/métodos , Animais , Medicina Regenerativa/métodos , Regeneração , Diferenciação Celular , Técnicas de Cultura de Células/métodos , Proliferação de Células , Técnicas de Cultura de Células em Três Dimensões/métodos
8.
Regen Biomater ; 11: rbae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414797

RESUMO

For repairing peripheral nerve and spinal cord defects, biomaterial scaffold-based cell-therapy was emerged as an effective strategy, requiring the positive response of seed cells to biomaterial substrate and environment signals. Previous work highlighted that the imposed surface properties of scaffold could provide important guidance cues to adhered cells for polarization. However, the insufficiency of native Schwann cells and unclear cellular response mechanisms remained to be addressed. Given that, this study aimed to illuminate the micropatterned chitosan-film action on the rat skin precursor-derived Schwann cells (SKP-SCs). Chitosan-film with different ridge/groove size was fabricated and applied for the SKP-SCs induction. Results indicated that SKP-SCs cultured on 30 µm size microgroove surface showed better oriented alignment phenotype. Induced SKP-SCs presented similar genic phenotype as repair Schwann cells, increasing expression of c-Jun, neural cell adhesion molecule, and neurotrophic receptor p75. Moreover, SKP-SC-secretome was subjected to cytokine array GS67 assay, data indicated the regulation of paracrine phenotype, a panel of cytokines was verified up-regulated at secreted level and gene expression level in induced SKP-SCs. These up-regulated cytokines exhibit a series of promotive neural regeneration functions, including cell survival, cell migration, cell proliferation, angiogenesis, axon growth, and cellular organization etc. through bioinformatics analysis. Furthermore, the effectively polarized SKP-SCs-sourced secretome, promoted the proliferation and migration capacity of the primarily cultured native rat Schwann cells, and augmented neurites growth of the cultured motoneurons, as well as boosted axonal regrowth of the axotomy-injured motoneurons. Taken together, SKP-SCs obtained pro-neuroregeneration phenotype in adaptive response to the anisotropic topography surface of chitosan-film, displayed the oriented parallel growth, the transition towards repair Schwann cell genic phenotype, and the enhanced paracrine effect on neural regeneration. This study provided novel insights into the potency of anisotropic microtopography surface to Schwann-like cells phenotype regulation, that facilitating to provide promising engineered cell-scaffold in neural injury therapies.

9.
Bioact Mater ; 35: 401-415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38384987

RESUMO

Peripheral nerve injury (PNI) seriously affects the health and life of patients, and is an urgent clinical problem that needs to be resolved. Nerve implants prepared from various biomaterials have played a positive role in PNI, but the effect should be further improved and thus new biomaterials is urgently needed. Ovalbumin (OVA) contains a variety of bioactive components, low immunogenicity, tolerance, antimicrobial activity, non-toxicity and biodegradability, and has the ability to promote wound healing, cell growth and antimicrobial properties. However, there are few studies on the application of OVA in neural tissue engineering. In this study, OVA implants with different spatial structures (membrane, fiber, and lyophilized scaffolds) were constructed by casting, electrospinning, and freeze-drying methods, respectively. The results showed that the OVA implants had excellent physicochemical properties and were biocompatible without significant toxicity, and can promote vascularization, show good histocompatibility, without excessive inflammatory response and immunogenicity. The in vitro results showed that OVA implants could promote the proliferation and migration of Schwann cells, while the in vivo results confirmed that OVA implants (the E5/70% and 20 kV 20 µL/min groups) could effectively regulate the growth of blood vessels, reduce the inflammatory response and promote the repair of subcutaneous nerve injury. Further on, the high-throughput sequencing results showed that the OVA implants up-regulated differential expression of genes related to biological processes such as tumor necrosis factor-α (TNF-α), phosphatidylinositide 3-kinases/protein kinase B (PI3K-Akt) signaling pathway, axon guidance, cellular adhesion junctions, and nerve regeneration in Schwann cells. The present study is expected to provide new design concepts and theoretical accumulation for the development of a new generation of nerve regeneration implantable biomaterials.

11.
Biomater Sci ; 11(22): 7296-7310, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37812084

RESUMO

The purpose of nerve regeneration via tissue engineering strategies is to create a microenvironment that mimics natural nerve growth for achieving functional recovery. Biomaterial scaffolds offer a promising option for the clinical treatment of large nerve gaps due to the rapid advancement of materials science and regenerative medicine. The design of biomimetic scaffolds should take into account the inherent properties of the nerve and its growth environment, such as stiffness, topography, adhesion, conductivity, and chemical functionality. Various advanced techniques have been employed to develop suitable scaffolds for nerve repair. Since neuronal cells have electrical activity, the transmission of bioelectrical signals is crucial for the functional recovery of nerves. Therefore, an ideal peripheral nerve scaffold should have electrical activity properties similar to those of natural nerves, in addition to a delicate structure. Piezoelectric materials can convert stress changes into electrical signals that can activate different intracellular signaling pathways critical for cell activity and function, which makes them potentially useful for nerve tissue regeneration. However, a comprehensive review of piezoelectric materials for neuroregeneration is still lacking. Thus, this review systematically summarizes the development of piezoelectric materials and their application in the field of nerve regeneration. First, the electrical signals and natural piezoelectricity phenomenon in various organisms are briefly introduced. Second, the most commonly used piezoelectric materials in neural tissue engineering, including biocompatible piezoelectric polymers, inorganic piezoelectric materials, and natural piezoelectric materials, are classified and discussed. Finally, the challenges and future research directions of piezoelectric materials for application in nerve regeneration are proposed.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Medicina Regenerativa , Regeneração Nervosa
12.
Int J Biol Macromol ; 253(Pt 4): 127015, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37758111

RESUMO

Peripheral nerve injuries (PNI) currently have limited therapeutic efficacy, and functional scaffolds have been shown to be effective for treating PNI. Ovalbumin (OVA) is widely used as a natural biomaterial for repairing damaged tissues due to its excellent biocompatibility and the presence of various bioactive components. However, there are few reports on the repair of PNI by ovalbumin. In this study, a novel bionic functionalized topological scaffold based on ovalbumin and grafted with tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide was constructed by micro-molding method and surface-biomodification technology. The scaffolds were subjected to a series of evaluations in terms of morphology, mechanics, hydrophilicity, and biocompatibility, and the related molecular mechanisms were further penetrated. The results showed that the scaffolds prepared in this study had aligned ridge/groove structure, good mechanical properties and biocompatibility, and could be used as carriers to slowly release YIGSR, which effectively promoted the proliferation, migration and elongation of Schwann Cells (SCs), and significantly up-regulated the gene expression related to proliferation, apoptosis, migration and axon regeneration. Therefore, the bionic functional topological scaffold has significant application potential for promoting peripheral nerve regeneration and provides a new therapeutic option for repairing PNI.


Assuntos
Axônios , Traumatismos dos Nervos Periféricos , Humanos , Ovalbumina/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann , Peptídeos/química , Traumatismos dos Nervos Periféricos/terapia , Alicerces Teciduais/química
13.
Proc Natl Acad Sci U S A ; 120(33): e2305704120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549277

RESUMO

Biocompatible and morphable hydrogels capable of multimode reprogrammable, and adaptive shape changes are potentially useful for diverse biomedical applications. However, existing morphable systems often rely on complicated structural designs involving cumbersome and energy-intensive fabrication processes. Here, we report a simple electric-field-activated protein network migration strategy to reversibly program silk-protein hydrogels with controllable and reprogrammable complex shape transformations. The application of a low electric field enables the convergence of net negatively charged protein cross-linking networks toward the anode (isoelectric point plane) due to the pH gradient generated in the process, facilitating the formation of a gradient network structure and systems suitable for three-dimensional shape change. These tunable protein networks can be reprogrammed or permanently fixed by control of the polymorphic transitions. We show that these morphing hydrogels are capable of conformally interfacing with biological tissues by programming the shape changes and a bimorph structure consisting of aligned carbon nanotube multilayers and the silk hydrogels was assembled to illustrate utility as an implantable bioelectronic device for localized low-voltage electrical stimulation of the sciatic nerve in a rabbit.


Assuntos
Hidrogéis , Seda , Animais , Coelhos , Seda/química , Hidrogéis/química , Ponto Isoelétrico , Materiais Biocompatíveis/química
14.
Int J Biol Macromol ; 246: 125518, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37353122

RESUMO

Silk fibroin (SF) as a natural polymer has a long history of application in various regenerative medicine fields, but there are still many shortcomings in silk fibroin for using as nerve scaffolds, which limit its clinical application in peripheral nerve regeneration (PNR). In this work, a multi-scale and multi-level metformin (MF)-loaded silk fibroin scaffold with anisotropic micro-nano composite topology was prepared by micromolding electrospinning for accelerating PNR. The scaffolds were characterized for morphology, wettability, mechanical properties, degradability, and drug release, and Schwann cells (SCs) and dorsal root ganglia (DRG) were cultured on the scaffolds to assess their effects on neural cell behavior. Finally, the gene expression differences of neural cells cultured on scaffolds were analyzed by gene sequencing and RT-qPCR to explore the possible signaling pathways and mechanisms. The results showed that the scaffolds had excellent mechanical properties and hydrophilicity, slow degradation rate and drug release rate, which were enough to support the repair of peripheral nerve injury for a long time. In Vitro cell experiments showed that the scaffolds could significantly promote the orientation of SCs and axons extension of DRG. Gene sequencing and RT-qPCR revealed that the scaffolds could up-regulate the expression of genes related to SCs proliferation, adhesion, migration, and myelination. In summary, the scaffolds hold great potential for promoting PNR at the micro/nano multiscale and physical/chemical levels and show promising application for the treatment of peripheral nerve injury in the future.


Assuntos
Fibroínas , Metformina , Traumatismos dos Nervos Periféricos , Fibroínas/administração & dosagem , Fibroínas/química , Traumatismos dos Nervos Periféricos/terapia , Anisotropia , Conformação Proteica em Folha beta , Animais , Ratos , Linhagem Celular , Metformina/administração & dosagem , Células de Schwann , Gânglios Espinais/citologia , Nervo Isquiático/lesões
15.
Burns Trauma ; 11: tkac054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873284

RESUMO

Spinal cord injury (SCI) is an incurable trauma that frequently results in partial or complete loss of motor and sensory function. Massive neurons are damaged after the initial mechanical insult. Secondary injuries, which are triggered by immunological and inflammatory responses, also result in neuronal loss and axon retraction. This results in defects in the neural circuit and a deficiency in the processing of information. Although inflammatory responses are necessary for spinal cord recovery, conflicting evidence of their contributions to specific biological processes have made it difficult to define the specific role of inflammation in SCI. This review summarizes our understanding of the complex role of inflammation in neural circuit events following SCI, such as cell death, axon regeneration and neural remodeling. We also review the drugs that regulate immune responses and inflammation in the treatment of SCI and discuss the roles of these drugs in the modulation of neural circuits. Finally, we provide evidence about the critical role of inflammation in facilitating spinal cord neural circuit regeneration in zebrafish, an animal model with robust regenerative capacity, to provide insights into the regeneration of the mammalian central nervous system.

16.
J Control Release ; 354: 337-353, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623697

RESUMO

Poly(beta-amino esters, PBAEs) are a promising class of cationic polymers synthesized from diacrylates and amines via Michael addition. Recently, PBAEs have been widely developed for drug delivery, immunotherapy, gene therapy, antibacterial, tissue engineering and other applications due to their convenient synthesis, good bio-compatibility and degradation properties. Herein, we mainly summarize the recent progress in the PBAEs synthesis and their applications. The amine groups of PBAEs could be protonated in low pH environment, exhibiting proton sponge and pH-sensitive abilities. Furthermore, the positive PBAEs can interact with negative genes via electrostatic interactions for efficient delivery of nucleic acids. Moreover, positive PBAEs could also directly kill bacteria by disrupting their membranes at high doses. Finally, PBAEs can augment the immune responses, and improve the bioactivity of hydrogels in tissue engineering.


Assuntos
Materiais Biocompatíveis , Ésteres , Polímeros/química , Sistemas de Liberação de Medicamentos , Terapia Genética
17.
Sci Data ; 9(1): 666, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323676

RESUMO

Rodent dorsal root ganglion (DRG) is widely used for studying axonal injury. Extensive studies have explored genome-wide profiles on rodent DRGs under peripheral nerve insults. However, systematic integration and exploration of these data still be limited. Herein, we re-analyzed 21 RNA-seq datasets and presented a web-based resource (DRGProfile). We identified 53 evolutionarily conserved injury response genes, including well-known injury genes (Atf3, Npy and Gal) and less-studied transcriptional factors (Arid5a, Csrnp1, Zfp367). Notably, we identified species-preference injury response candidates (e.g. Gpr151, Lipn, Anxa10 in mice; Crisp3, Csrp3, Vip, Hamp in rats). Temporal profile analysis reveals expression patterns of genes related to pre-regenerative and regenerating states. Finally, we found a large sex difference in response to sciatic nerve injury, and identified four male-specific markers (Uty, Eif2s3y, Kdm5d, Ddx3y) expressed in DRG. Our study provides a comprehensive integrated landscape for expression change in DRG upon injury which will greatly contribute to the neuroscience community.


Assuntos
Gânglios Espinais , Nervo Isquiático , Ratos , Masculino , Feminino , Camundongos , Animais , Gânglios Espinais/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Proteínas de Ligação a DNA , Fatores de Transcrição/metabolismo
18.
Burns Trauma ; 10: tkac030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071954

RESUMO

Background: Anisotropic topologies are known to regulate cell-oriented growth and induce cell differentiation, which is conducive to accelerating nerve regeneration, while co-culture of endothelial cells (ECs) and Schwann cells (SCs) can significantly promote the axon growth of dorsal root ganglion (DRG). However, the synergistic regulation of EC and SC co-culture of DRG behavior on anisotropic topologies is still rarely reported. The study aims to investigate the effect of anisotropic topology co-cultured with Schwann cells and endothelial cells on dorsal root ganglion behavior for promoting peripheral nerve regeneration. Methods: Chitosan/artemisia sphaerocephala (CS/AS) scaffolds with anisotropic topology were first prepared using micro-molding technology, and then the surface was modified with dopamine to facilitate cell adhesion and growth. The physical and chemical properties of the scaffolds were characterized through morphology, wettability, surface roughness and component variation. SCs and ECs were co-cultured with DRG cells on anisotropic topology scaffolds to evaluate the axon growth behavior. Results: Dopamine-modified topological CS/AS scaffolds had good hydrophilicity and provided an appropriate environment for cell growth. Cellular immunofluorescence showed that in contrast to DRG growth alone, co-culture of SCs and ECs could not only promote the growth of DRG axons, but also offered a stronger guidance for orientation growth of neurons, which could effectively prevent axons from tangling and knotting, and thus may significantly inhibit neurofibroma formation. Moreover, the co-culture of SCs and ECs could promote the release of nerve growth factor and vascular endothelial growth factor, and up-regulate genes relevant to cell proliferation, myelination and skeletal development via the PI3K-Akt, MAPK and cytokine and receptor chemokine pathways. Conclusions: The co-culture of SCs and ECs significantly improved the growth behavior of DRG on anisotropic topological scaffolds, which may provide an important basis for the development of nerve grafts in peripheral nerve regeneration.

19.
J Micromech Microeng ; 32(7)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35814808

RESUMO

Among approaches aiming toward functional nervous system restoration, those implementing microfabrication techniques allow the manufacture of platforms with distinct geometry where neurons can develop and be guided to form patterned connections in vitro. The interplay between neuronal development and the microenvironment, shaped by the physical limitations, remains largely unknown. Therefore, it is crucial to have an efficient way to quantify neuronal morphological changes induced by physical or contact guidance of the microenvironment. In this study, we first devise and assess a method to prepare anisotropic, gradient poly(dimethylsiloxane) micro-ridge/groove arrays featuring variable local pattern width. We then demonstrate the ability of this single substrate to simultaneously profile the morphologcial and synaptic connectivity changes of primary cultured hippocampal neurons reacting to variable physical conditons, throughout neurodevelopment, in vitro. The gradient microtopography enhanced adhesion within microgrooves, increasing soma density with decreasing pattern width. Decreasing pattern width also reduced dendritic arborization and increased preferential axon growth. Finally, decreasing pattern geometry inhibited presynaptic puncta architecture. Collectively, a method to examine structural development and connectivity in response to physical stimuli is established, and potentially provides insight into microfabricated geometries which promote neural regeneration and repair.

20.
Biomater Sci ; 10(17): 4915-4932, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35861493

RESUMO

Substrate elasticity and topographical guidance are crucial factors for regulating tissue regeneration, but the synergistic effects of both cues on peripheral nerve regeneration are still unclear. In this paper, polyacrylamide/chitosan (PAM/CS) composite hydrogels with synergistic characteristics of elasticity and morphology were prepared using in situ free-radical polymerization and micro-molding. The physicochemical properties of hydrogels were characterized, and the effect on peripheral nerve regeneration was systematically evaluated via in vitro and in vivo experiments, respectively. The in vitro experiments showed that on a PAM/CS composite hydrogel with an elastic modulus of 5.822 kPa/8.41 kPa and a surface groove width of 30 µm, the dorsal root ganglion (DRG) neurite had a strong growth ability and better-oriented status. The samples were taken from each group at 2 and 12 weeks after bridging rabbit sciatic nerve defects with a PAM/CS composite hydrogel conduit. General observation of the rabbit body and transplanted nerve, nerve electro-physiological examination, muscle wet weight recovery rate detection and comparison, observation of sciatic nerve frozen section immunofluorescence staining and myelinated nerve fiber recovery rate comparison were used to evaluate the effect of nerve transplantation. The elastic modulus of 8.41 kPa and groove width of 30 µm were similar to those of the autograft group. At the same time, the signaling pathways, including the focal adhesion markers vinculin, p-FAK, and Rho A protein, referring to axon adhesion and extension, were initially revealed. In summary, our developed hydrogel implants containing synergistic cues of elasticity and topographies may provide a new and effective strategy for the treatment of peripheral nerve injury in the future.


Assuntos
Quitosana , Resinas Acrílicas , Animais , Quitosana/química , Sinais (Psicologia) , Elasticidade , Hidrogéis/química , Regeneração Nervosa , Coelhos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...