Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
J Environ Sci (China) ; 147: 62-73, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003077

RESUMO

Non-ferrous metal smelting poses significant risks to public health. Specifically, the copper smelting process releases arsenic, a semi-volatile metalloid, which poses an emerging exposure risk to both workers and nearby residents. To comprehensively understand the internal exposure risks of metal(loid)s from copper smelting, we explored eighteen metal(loid)s and arsenic metabolites in the urine of both occupational and non-occupational populations using inductively coupled plasma mass spectrometry with high-performance liquid chromatography and compared their health risks. Results showed that zinc and copper (485.38 and 14.00 µg/L), and arsenic, lead, cadmium, vanadium, tin and antimony (46.80, 6.82, 2.17, 0.40, 0.44 and 0.23 µg/L, respectively) in workers (n=179) were significantly higher compared to controls (n=168), while Zinc, tin and antimony (412.10, 0.51 and 0.15 µg/L, respectively) of residents were significantly higher than controls. Additionally, workers had a higher monomethyl arsenic percentage (MMA%), showing lower arsenic methylation capacity. Source appointment analysis identified arsenic, lead, cadmium, antimony, tin and thallium as co-exposure metal(loid)s from copper smelting, positively relating to the age of workers. The hazard index (HI) of workers exceeded 1.0, while residents and control were approximately at 1.0. Besides, all three populations had accumulated cancer risks exceeding 1.0 × 10-4, and arsenite (AsIII) was the main contributor to the variation of workers and residents. Furthermore, residents living closer to the smelting plant had higher health risks. This study reveals arsenic exposure metabolites and multiple metals as emerging contaminants for copper smelting exposure populations, providing valuable insights for pollution control in non-ferrous metal smelting.


Assuntos
Metalurgia , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Exposição Ambiental/estatística & dados numéricos , Metais/urina , Metais/análise , Medição de Risco , Arsênio/análise , Monitoramento Ambiental , Adulto , Poluentes Ambientais/análise , Pessoa de Meia-Idade
2.
Environ Int ; 190: 108927, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39121826

RESUMO

In the context of pandemic viruses and pathogenic bacteria, triclosan (TCS), as a typical antibacterial agent, is widely used around the world. However, the health risks from TCS increase with exposure, and it is widespread in environmental and human samples. Notably, environmental transformation and human metabolism could induce potentially undesirable risks to humans, rather than simple decontamination or detoxification. This review summarizes the environmental and human exposure to TCS covering from 2004 to 2023. Particularly, health impacts from the environmental and metabolic transformation of TCS are emphasized. Environmental transformations aimed at decontamination are recognized to form carcinogenic products such as dioxins, and ultraviolet light and excessive active chlorine can promote the formation of these dioxin congeners, potentially threatening environmental and human health. Although TCS can be rapidly metabolized for detoxification, these processes can induce the formation of lipophilic ether metabolic analogs via cytochrome P450 catalysis, causing possible adverse cross-talk reactions in human metabolic disorders. Accordingly, TCS may be more harmful in environmental transformation and human metabolism. In particular, TCS can stimulate the transmission of antibiotic resistance even at trace levels, threatening public health. Considering these accruing epidemiological and toxicological studies indicating the multiple adverse health outcomes of TCS, we call on environmental toxicologists to pay more attention to the toxicity evolution of TCS during environmental transformation and human metabolism.

3.
Ann Med ; 56(1): 2381085, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39099020

RESUMO

BACKGROUND: Rat models are valuable tools to study the lung microbiota in diseases. Yet the impacts of different lung parts, young and mature adult stages, and the different batches of the same conditions on the healthy rat lung microbiome have not been investigated. METHODS: The rat lung microbiome was analyzed to clarify the lung part-dependent and age-dependent differences and to evaluate the effects of several 'batch environmental factors' on normal rats, after eliminating potential contamination. RESULTS: The results showed that the contamination could be identified and excluded. The lung microbiome from left and right lung parts was very similar so one representative part could be used in the microbiome study. There were significantly different lung microbial communities between the young and mature adult groups, and also between the different feeding batches groups of the same repetitive feeding conditions, but a common lung microbiota characterized by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria as the most dominant phyla were present in all adult rats. It indicated that the experiment under the same condition of the same rats batch was needed to compare the difference in the lung microbiota and repeated experiments were necessary to confirm the results. CONCLUSION: These data represented that the lung bacterial communities were dynamic and rapidly susceptible to environmental influence, clustered strongly by age or different feeding batches but similar in the different lung tissue parts. This study improved the basic understanding of the potential effects on the lung microbiome of healthy rats.


Assuntos
Pulmão , Microbiota , Animais , Pulmão/microbiologia , Ratos/microbiologia , Masculino , Fatores Etários , Ratos Sprague-Dawley , Bactérias/classificação , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética
4.
Cell Death Discov ; 10(1): 314, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972937

RESUMO

Kidney fibrosis is considered to be the ultimate aggregation pathway of chronic kidney disease (CKD), but its underlying mechanism remains elusive. Protein kinase C-delta (PKC-δ) plays critical roles in the control of growth, differentiation, and apoptosis. In this study, we found that PKC-δ was highly upregulated in human biopsy samples and mouse kidneys with fibrosis. Rottlerin, a PKC-δ inhibitor, alleviated unilateral ureteral ligation (UUO)-induced kidney fibrosis, inflammation, VDAC1 expression, and cGAS-STING signaling pathway activation. Adeno-associated virus 9 (AAV9)-mediated VDAC1 silencing or VBIT-12, a VDAC1 inhibitor, attenuated renal injury, inflammation, and activation of cGAS-STING signaling pathway in UUO mouse model. Genetic and pharmacologic inhibition of STING relieved renal fibrosis and inflammation in UUO mice. In vitro, hypoxia resulted in PKC-δ phosphorylation, VDAC1 oligomerization, and activation of cGAS-STING signaling pathway in HK-2 cells. Inhibition of PKC-δ, VDAC1 or STING alleviated hypoxia-induced fibrotic and inflammatory responses in HK-2 cells, respectively. Mechanistically, PKC-δ activation induced mitochondrial membrane VDAC1 oligomerization via direct binding VDAC1, followed by the mitochondrial DNA (mtDNA) release into the cytoplasm, and subsequent activated cGAS-STING signaling pathway, which contributed to the inflammation leading to fibrosis. In conclusion, this study has indicated for the first time that PKC-δ is an important regulator in kidney fibrosis by promoting cGAS-STING signaling pathway which mediated by VDAC1. PKC-δ may be useful for treating renal fibrosis and subsequent CKD.

5.
J Hazard Mater ; 476: 135121, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981233

RESUMO

Pollution of the aqueous environment by volatile organic compounds (VOCs) has caused increasing concerns. However, the occurrence and risks of aqueous VOCs in oil exploitation areas remain unclear. Herein, spatial distribution, migration flux, and environmental risks of VOCs in complex surface waters (including River, Estuary, Offshore and Aquaculture areas) were investigated at a typical coastal oil exploitation site. Among these surface waters, River was the most polluted area, and 1,2-Dichloropropane-which emerges from oil extraction activities-was the most prevalent VOC. Positive matrix factorization showed that VOCs pollution sources changed from oil exploitation to offshore disinfection activities along River, Estuary, Offshore and Aquaculture areas. Annual volatilization of VOCs to the atmosphere was predicted to be ∼34.42 tons, and rivers discharge ∼23.70 tons VOCs into the Bohai Sea annually. Ecological risk assessment indicated that Ethylbenzene and Bromochloromethane posed potential ecological risks to the aquatic environment, while olfactory assessment indicated that VOCs in surface waters did not pose an odor exposure risk. This study provides the first assessment of the pollution characteristics of aqueous VOCs in complex aqueous environments of oil exploitation sites, highlighting that oil exploitation activities can have nonnegligible impacts on VOCs pollution profiles.

6.
Sci Total Environ ; 948: 174924, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047835

RESUMO

Volatile organic compounds (VOCs) are widespread harmful atmospheric pollutants, which have long been concerned and elucidated to be one of the risks of acute and chronic diseases for human, such as leukemia and cancer. Although numerous scientific studies have documented the potential adverse outcomes caused by VOC exposure, the mechanisms which biological response pathways of these VOC disruption remain poorly understood. Therefore, the identification of biochemical markers associated with metabolism, health effects and diseases orientation can be an effective means of screening biological targets for VOC exposure, which provide evidences to the toxicity assessment of compounds. The current review aims to understand the mechanisms underlying VOCs-elicited adverse outcomes by charactering various types of biomarkers. VOCs-related biomarkers from three aspects were summarized through in vitro, animal and epidemiological studies. i) Unmetabolized and metabolized VOC biomarkers in human samples for assessing exposure characteristics in different communities; ii) Adverse endpoint effects related biomarkers, mainly including (anti)oxidative stress, inflammation response and DNA damage; iii) Omics-based molecular biomarkers alteration in gene, protein, lipid and metabolite aspects associated with biological signaling pathway disorders response to VOC exposure. Further research, advanced machine learning and bioinformation approaches combined with experimental results are urgently needed to ascertain the selection of biomarkers and further illuminate toxic mechanisms of VOC exposure. Finally, VOCs-induced disease causes can be predicted with proven results.


Assuntos
Poluentes Atmosféricos , Biomarcadores , Compostos Orgânicos Voláteis , Biomarcadores/metabolismo , Humanos , Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Animais , Estresse Oxidativo
7.
Water Res ; 262: 122137, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39059198

RESUMO

Bacterial biofilms pose significant a public health risk as an environmental reservoir for opportunistic aquatic bacterial pathogens. Understanding the interspecies roles of complex bacterial biofilms under different stimuli and regulatory mechanisms of stress responses is the key to controlling their dissemination. Herein, two-species mixture (TSM) biofilms (Staphylococcus aureus and Pseudomonas aeruginosa) were constructed in a flowthrough reactor. Compared with the single-species biofilms, the TSM biofilm had higher growth activity to reach maturity faster, forming a staggered community structure. Moreover, the TSM biofilm exhibited greatly improved resistance to different antibiotics (16-128 times higher), especially to those that act on protein synthesis and cell membrane integrity, when compared to single planktonic microorganisms. In the presence of stimuli, photocatalysis effectively inactivated the TSM biofilm within 10 h, a 4-fold shorter inactivation time compared to UVC irradiation. In addition, photocatalysis effectively depleted the extracellular polymers of the TSM biofilm and inhibited secretion of their interspecies quorum sensing signaling molecule autoinducer-2 (AI-2). However, the expression of AI-2 induced related virulence factors, and biofilm growth-related genes were initially up-regulated 3 - 10 fold for the TSM biofilm within the first 2 - 4 h of photocatalysis, followed by significant down-regulation. Furthermore, the addition of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione effectively delayed the photocatalytic inactivation efficiency of the TSM biofilm compared to the control. These results suggest that photocatalysis can effectively inactivate biofilms by inhibiting interspecies cooperation by quenching AI-2 in the TSM biofilm. This work sheds light on controlling biofilms in public health engineering systems.

8.
Environ Int ; 190: 108857, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38954924

RESUMO

Bioaerosols are more likely to accumulate in the residential environment, and long-term inhalation may lead to a variety of diseases and allergies. Here, we studied the distribution, influencing factors and diffusion characteristics of indoor and outdoor microbiota pollution in six residential buildings in Guangzhou, southern China over a period of one year. The results showed that the particle sizes of bioaerosol were mainly in the range of inhalable particle size (<4.7 µm) with a small difference among four seasons (74.61 % ± 2.17 %). The microbial communities showed obvious seasonal differences with high abundance in summer, but no obvious geographical differences. Among them, the bacteria were more abundant than the fungi. The dominant microbes in indoor and outdoor environments were similar, with Anoxybacillu, Brevibacillus and Acinetobacter as the dominant bacteria, and Cladosporium, Penicillium and Alternaria as the dominant fungi. The airborne microbiomes were more sensitive to temperature and particulate matter (PM2.5, PM10) concentrations. Based on the Sloan neutral model, bacteria were more prone to random diffusion than fungi, and the airborne microbiome can be randomly distributed in indoor and outdoor environments and between the two environments in each season. Bioaerosol in indoor was mainly from outdoor. The health risk evaluation showed that the indoor inhalation risks were higher than those outdoor. The air purifier had a better removal efficiency on 1.1-4.7 µm microorganisms, and the removal efficiency on Gram-negative bacteria was better than that on Gram-positive bacteria. This study is of great significance for the risk assessment and control of residential indoor bioaerosol exposure.

9.
Fundam Res ; 4(3): 442-454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933213

RESUMO

The aerosol transmission of coronavirus disease in 2019, along with the spread of other respiratory diseases, caused significant loss of life and property; it impressed upon us the importance of real-time bioaerosol detection. The complexity, diversity, and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring. Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods, preventing the high-resolution time-based characteristics necessary for an online approach. Through a comprehensive literature assessment, this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors. Methods applied in online bioaerosol monitoring, including adenosine triphosphate bioluminescence, laser/light-induced fluorescence spectroscopy, Raman spectroscopy, and bioaerosol mass spectrometry are summarized. The working principles, characteristics, sensitivities, and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences. Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced. Finally, an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.

10.
Adv Sci (Weinh) ; : e2400149, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898748

RESUMO

The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) and its adaptor, stimulator of interferon genes (STING), is known to reprogram the immunosuppressive tumor microenvironment for promoting antitumor immunity. To enhance the efficiency of cGAS-STING pathway activation, macrophage-selective uptake, and programmable cytosolic release are crucial for the delivery of STING agonists. However, existing polymer- or lipid-based delivery systems encounter difficulty in integrating multiple functions meanwhile maintaining precise control and simple procedures. Herein, inspired by cGAS being a natural DNA sensor, a modularized DNA nanodevice agonist (DNDA) is designed that enable macrophage-selective uptake and programmable activation of the cGAS-STING pathway through precise self-assembly. The resulting DNA nanodevice acts as both a nanocarrier and agonist. Upon local administration, it demonstrates the ability of macrophage-selective uptake, endosomal escape, and cytosolic release of the cGAS-recognizing DNA segment, leading to robust activation of the cGAS-STING pathway and enhanced antitumor efficacy. Moreover, DNDA elicits a synergistic therapeutic effect when combined with immune checkpoint blockade. The study broadens the application of DNA nanotechnology as an immune stimulator for cGAS-STING activation.

11.
ACS Appl Mater Interfaces ; 16(27): 34720-34731, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38934381

RESUMO

Anti-inflammatory and angiogenesis are two important factors in wound healing. Wound dressings with anti-inflammation and vascularization are essential to address complex interventions, expensive treatments, and uncontrolled release mechanisms. Based on the above considerations, we designed a near-infrared (NIR)-responsive hydrogel dressing, which is composed of mPDA-DFO@LA nanoparticles (mPDA: dopamine hydrochloride nanoparticles, DFO: deferoxamine, LA: lauric acid), valsartan (abbreviated as Va), and dopamine-hyaluronic acid hydrogel. The hydrogel dressing demonstrated injectability, bioadhesive, and photothermal properties. The results indicated the obtained dressing by releasing Va can appropriately regulate macrophage phenotype transformation from M1 to M2, resulting in an anti-inflammatory environment. In addition, DFO encapsulated by LA can be sustainably released into the wound site by NIR irradiation, which further prevents excessive neovascularization. Notably, the results in vivo indicated the mPDA-DFO@LA/Va hydrogel dressing significantly enhanced wound recovery, achieving a healing rate of up to 96% after 11 days of treatment. Therefore, this NIR-responsive hydrogel dressing with anti-inflammation, vascularization, and on-demand programmed drug release will be a promising wound dressing for wound infection.


Assuntos
Anti-Inflamatórios , Bandagens , Hidrogéis , Nanocompostos , Cicatrização , Animais , Camundongos , Angiogênese/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Desferroxamina/química , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Dopamina/química , Dopamina/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Raios Infravermelhos , Ácidos Láuricos/química , Ácidos Láuricos/farmacologia , Nanocompostos/química , Nanocompostos/uso terapêutico , Células RAW 264.7 , Cicatrização/efeitos dos fármacos
12.
Environ Int ; 187: 108704, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692150

RESUMO

With the rapid growth of aquaculture globally, large amounts of antibiotics have been used to treat aquatic disease, which may accelerate induction and spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in aquaculture environments. Herein, metagenomic and 16S rRNA analyses were used to analyze the potentials and co-occurrence patterns of pathogenome (culturable and unculturable pathogens), antibiotic resistome (ARGs), and mobilome (mobile genetic elements (MGEs)) from mariculture waters near 5000 km coast of South China. Total 207 species of pathogens were identified, with only 10 culturable species. Furthermore, more pathogen species were detected in mariculture waters than those in coastal waters, and mariculture waters were prone to become reservoirs of unculturable pathogens. In addition, 913 subtypes of 21 ARG types were also identified, with multidrug resistance genes as the majority. MGEs including plasmids, integrons, transposons, and insertion sequences were abundantly present in mariculture waters. The co-occurrence network pattern between pathogenome, antibiotic resistome, and mobilome suggested that most of pathogens may be potential multidrug resistant hosts, possibly due to high frequency of horizontal gene transfer. These findings increase our understanding of mariculture waters as reservoirs of antibiotic resistome and mobilome, and as yet another hotbed for creation and transfer of new antibiotic-resistant pathogenome.


Assuntos
Antibacterianos , Aquicultura , Bactérias , RNA Ribossômico 16S , Bactérias/genética , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , China , Microbiologia da Água , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal , Resistência Microbiana a Medicamentos/genética , Metagenômica
13.
Environ Int ; 187: 108729, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735077

RESUMO

Due to the specific action on bacterial cell wall, ß-lactam antibiotics have gained widespread usage as they exhibit a high degree of specificity in targeting bacteria, but causing minimal toxicity to host cells. Under antibiotic pressure, bacteria may opt to shed their cell walls and transform into L-form state as a means to evade the antibiotic effects. In this study, we explored and identified diverse optimal conditions for both Gram-negative bacteria (E. coli DH5α (CTX)) and Gram-positive bacteria (B. subtilis ATCC6633), which were induced to L-form bacteria using lysozyme (0.5 ppm) and meropenem (64 ppm). Notably, when bacteria transformed into L-form state, both bacterial strains showed varying degrees of increased resistance to antibiotics polymyxin E, meropenem, rifampicin, and tetracycline. E. coli DH5α (CTX) exhibited the most significant enhancement in resistance to tetracycline, with a 128-fold increase, while B. subtilis ATCC6633 showed a 32-fold increase in resistance to tetracycline and polymyxin E. Furthermore, L-form bacteria maintained their normal metabolic activity, combined with enhanced oxidative stress, served as an adaptive strategy promoting the sustained survival of L-form bacteria. This study provided a theoretical basis for comprehending antibiotic resistance mechanisms, developing innovative treatment strategies, and confronting global antibiotic resistance challenges.


Assuntos
Antibacterianos , Bacillus subtilis , Escherichia coli , Estresse Oxidativo , Antibacterianos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Tetraciclina/farmacologia , Meropeném/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38702154

RESUMO

Background: The objective of this study was to investigate the relationship between vascular calcification, serum lncRNA H19, and Runt-Related Transcription Factor 2 mRNA expression in patients with uremia. Methods: This study is a retrospective study which recruited 146 patients with uremia on dialysis from December 2021 to November 2022. Participants were divided into the VC and non-VC groups based on their chest X-ray calcification ratings. General and clinical data were collected from all patients. Serum H19, Runx2 mRNA, mineral bone disease effectors, and other blood markers were tested. Univariate analysis was performed to compare the changes in each clinical index between these two groups of patients. A multi-factor logistic regression analysis of risk factors for VC was performed. Receiver operating characteristics analyzed the H19 and Runx2 for their diagnostic values for VC. Pearson's test was used to analyze the correlation between the H19 and Runx2 expression and the factors influencing VC. Results: Patients in the VC group had significantly higher creatinine, serum phosphorus, calcium, BMP-2, FGF-23, OPG, and iPTH levels than those in the non-VC group (P < .05), while their albumin levels were significantly lower than those in the non-VC group (P < .05). The expression of H19 and Runx2 mRNA was significantly upregulated in the serum of VC patients (P < .05). H19 was significantly positively correlated with creatinine, serum phosphorus, calcium, BMP-2, OPG, and iPTH (P < .05). Runx2 mRNA was significantly positively correlated with creatinine, FGF-23, and iPTH (P < .05 ), while there was no significant correlation with other factors(P > .05). Albumin, BMP-2, iPTH, H19, and Runx2 were independent correlative-factors of uremic VC. In addition, the combined H19 and Runx2 test (AUC=0.850; 95% CI: 0.781-0.903) had good diagnostic values for the development of VC. Conclusion: Serum H19 and Runx2 levels are significantly associated with VC-related factors and are independent risk factors for uremic VC, and their levels contribute to the diagnosis of uremic VC.

15.
Biosens Bioelectron ; 259: 116382, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749284

RESUMO

Small extracellular vesicles (sEVs) reflect the genotype and phenotype of original cells and are biomarkers for early diagnosis and treatment monitoring of tumors. Yet, their small size and low density make them difficult to isolate and detect in body fluid samples. This study proposes a novel acDEP-Exo chip filled with transparent micro-beads, which formed a non-uniform electrical field, and finally achieved rapid, sensitive, and tunable sEVs capture and detection. The method requires only 20-50 µL of sample, achieved a limit of detection (LOD) of 161 particles/µL, and can detect biomarkers within 13 min. We applied the chip to analyze the two markers of sEV's EpCAM and MUC1 in clinical plasma samples from breast cancer (BC) patients and healthy volunteers and found that the combined evaluation of sEV's biomarkers has extremely high sensitivity, specificity and accuracy. The present study introduces an alternative approach to sEVs isolation and detection, has a great potential in real-time sEVs-based liquid biopsy.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias da Mama , Molécula de Adesão da Célula Epitelial , Vesículas Extracelulares , Dispositivos Lab-On-A-Chip , Mucina-1 , Humanos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/sangue , Vesículas Extracelulares/química , Feminino , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Mucina-1/sangue , Mucina-1/análise , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/isolamento & purificação , Limite de Detecção , Desenho de Equipamento , Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Biópsia Líquida/métodos , Biópsia Líquida/instrumentação
16.
J Hazard Mater ; 472: 134459, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691999

RESUMO

Bioaerosols are widely distributed in urban air and can be transmitted across the atmosphere, biosphere, and anthroposphere, resulting in infectious diseases. Automobile air conditioning (AAC) filters can trap airborne microbes. In this study, AAC filters were used to investigate the abundance and pathogenicity of airborne microorganisms in typical Chinese and European cities. Culturable bacteria and fungi concentrations were determined using microbial culturing. High-throughput sequencing was employed to analyze microbial community structures. The levels of culturable bioaerosols in Chinese and European cities exhibited disparities (Analysis of Variance, P < 0.01). The most dominant pathogenic bacteria and fungi were similar in Chinese (Mycobacterium: 18.2-18.9 %; Cladosporium: 23.0-30.2 %) and European cities (Mycobacterium: 15.4-37.7 %; Cladosporium: 18.1-29.3 %). Bartonella, Bordetella, Alternaria, and Aspergillus were also widely identified. BugBase analysis showed that microbiomes in China exhibited higher abundances of mobile genetic elements (MGEs) and biofilm formation capacity than those in Europe, indicating higher health risks. Through co-occurrence network analysis, heavy metals such as zinc were found to correlate with microorganism abundance; most bacteria were inversely associated, while fungi exhibited greater tolerance, indicating that heavy metals affect the growth and reproduction of bioaerosol microorganisms. This study elucidates the influence of social and environmental factors on shaping microbial community structures, offering practical insights for preventing and controlling regional bioaerosol pollution.


Assuntos
Ar Condicionado , Microbiologia do Ar , Automóveis , Bactérias , Cidades , Fungos , China , Europa (Continente) , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Fungos/patogenicidade , Fungos/genética , Filtros de Ar/microbiologia , Poluentes Atmosféricos/análise , Microbiota , Monitoramento Ambiental
17.
Water Res ; 259: 121837, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810347

RESUMO

The increase and spread of antibiotic-resistant bacteria (ARB) in aquatic environments and the dissemination of antibiotic resistance genes (ARGs) greatly impact environmental and human health. It is necessary to understand the mechanism of action of ARB and ARGs to formulate measures to solve this problem. This study aimed to determine the mechanism of antibiotic resistance spread during sub-lethal ozonation of ARB with different antibiotic resistance targets, including proteins, cell walls, and cell membranes. ARB conjugation and transformation frequencies increased after exposure to 0-1.0 mg/L ozone for 10 min. During sub-lethal ozonation, compared with control groups not stimulated by ozone, the conjugative transfer frequencies of E. coli DH5α (CTX), E. coli DH5α (MCR), and E. coli DH5α (GEN) increased by 1.35-2.02, 1.13-1.58, and 1.32-2.12 times, respectively; the transformation frequencies of E. coli DH5α (MCR) and E. coli DH5α (GEN) increased by 1.49-3.02 and 1.45-1.92 times, respectively. When target inhibitors were added, the conjugative transfer frequencies of antibiotics targeting cell wall and membrane synthesis decreased 0.59-0.75 and 0.43-0.76 times, respectively, while that for those targeting protein synthesis increased by 1-1.38 times. After inhibitor addition, the transformation frequencies of bacteria resistant to antibiotics targeting the cell membrane and proteins decreased by 0.76-0.89 and 0.69-0.78 times, respectively. Cell morphology, cell membrane permeability, reactive oxygen species, and antioxidant enzymes changed with different ozone concentrations. Expression of most genes related to regulating different antibiotic resistance targets was up-regulated when bacteria were exposed to sub-lethal ozonation, further confirming the target genes playing a crucial role in the inactivation of different target bacteria. These results will help guide the careful utilization of ozonation for bacterial inactivation, providing more detailed reference information for ozonation oxidation treatment of ARB and ARGs in aquatic environments.


Assuntos
Antibacterianos , Escherichia coli , Ozônio , Ozônio/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Resistência Microbiana a Medicamentos/genética , Bactérias/efeitos dos fármacos
18.
Sci Total Environ ; 937: 173404, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797419

RESUMO

Rapid detection of airborne pathogens is crucial in preventing respiratory infections and allergies. However, technologies aiming to real-time analysis of microorganisms in air remain limited due to the sparse and complex nature of bioaerosols. Here, we introduced an online bioaerosol monitoring system (OBMS) comprised of integrated units including a rotatable stainless-steel sintered filter-based sampler, a lysis unit for extracting adenosine triphosphate (ATP), and a single photon detector-based fluorescence unit. Through optimization of the ATP bioluminescence method and establishment of standard curves between relative luminescence units (RLUs) and ATP as well as microbial concentration, we achieved simultaneous detection of bioaerosols' concentration and activity. Testing OBMS with four bacterial and two fungal aerosols at a sampling flow rate of 10 to 50 L/min revealed an outstanding collection efficiency of 95 % at 30 L/min. A single OBMS measurement takes only 8 min (sampling: 5 min; lysis and detection: 3 min) with detection limits of 3 Pcs/ms photons (2.9 × 103 and 292 CFU/m3 for Staphylococcus aureus and Candida albicans aerosol). In both laboratory and field tests, OBMS detected higher concentrations of bioaerosol compared to the traditional Andersen impactor and liquid biosampler. When combined OBMS with loop-mediated isothermal amplification (LAMP), the bioaerosol can be qualitative and quantitative analyzed within 40 min without the cumbersome procedures of sample pretreatment and DNA extraction. These results offer a high compressive and humidity resistance membrane filtration sampler and validate the potential of OBMS for online measurement of bioaerosol concentration and composition.


Assuntos
Trifosfato de Adenosina , Aerossóis , Microbiologia do Ar , Monitoramento Ambiental , Medições Luminescentes , Técnicas de Amplificação de Ácido Nucleico , Aerossóis/análise , Trifosfato de Adenosina/análise , Monitoramento Ambiental/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Medições Luminescentes/métodos , Técnicas de Diagnóstico Molecular
19.
J Hazard Mater ; 473: 134589, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772114

RESUMO

Epidemiological evidence indicates that exposure to halogenated polycyclic aromatic hydrocarbons (HPAHs) is associated with many adverse effects. However, the mechanisms of metabolic disorder of HPAHs remains limited. Herein, effects of pyrene (Pyr), and its halogenated derivatives (1-chloropyrene (1-Cl-Pyr), 1-bromopyrene (1-Br-Pyr)) on endogenous metabolic pathways were investigated, in human hepatoma (HepG2) and HepG2-derived cell lines expressing various human cytochrome P450s (CYPs). Non-targeted metabolomics results suggested that 1-Br-Pyr and Pyr exposure (625 nM) induced disruption in glutathione and riboflavin metabolism which associated with redox imbalance, through abnormal accumulation of oxidized glutathione, mediated by bioactivation of CYP2E1. Conversely, CYP2C9-mediated 1-Cl-Pyr significantly interfered with glutathione metabolism intermediates, including glycine, L-glutamic acid and pyroglutamic acid. Notably, CYP1A1-mediated Pyr-induced perturbation of amino acid metabolism which associated with nutrition and glycolipid metabolism, resulting in significant upregulation of most amino acids, whereas halogenated derivatives mediated by CYP1A2 substantially downregulated amino acids. In conclusion, this study suggested that Pyr and its halogenated derivatives exert potent effects on endogenous metabolism disruption under the action of various exogenous metabolic enzymes (CYPs). Thus, new evidence was provided to toxicological mechanisms of HPAHs, and reveals potential health risks of HPAHs in inducing diseases caused by redox and amino acid imbalances.


Assuntos
Aminoácidos , Sistema Enzimático do Citocromo P-450 , Glutationa , Humanos , Glutationa/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Aminoácidos/metabolismo , Células Hep G2 , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/metabolismo , Pirenos/toxicidade
20.
J Hazard Mater ; 473: 134664, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788576

RESUMO

Epidemiological evidence indicates that exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with certain metabolic diseases. However, the relationship between PAHs and serum lipid profiles in exposed subjects remain unknown. Herein, the associations of multiple (8) urinary hydroxylated PAHs (OH-PAHs) in workers of coking (n = 655) and non-ferrous smelting (n = 614) industries with serum lipid levels (marking lipid metabolism) were examined. Multivariable linear regression, Bayesian kernel machine regression, and quantile g-computation were used. Most urinary OH-PAHs were significantly higher (p < 0.001) in coking workers than in non-ferrous smelting workers. In workers of both industries, OH-PAH exposure was associated with elevated levels of serum total cholesterol, total triglyceride, and low-density lipoprotein, as well as reduced high-density lipoprotein levels. Specifically, urinary 4-hydroxyphenanthrene was significantly positively associated with serum total cholesterol, total triglyceride, and low-density lipoprotein levels in non-ferrous smelting workers; however, the completely opposite association of 4-hydroxyphenanthrene with these lipid levels was observed in coking workers. The results of this pioneering examination suggest that exposure to OH-PAHs may contribute to dyslipidemia in coking and non-ferrous smelting workers, and distinct patterns of change were observed. Further prospective studies involving larger sample sizes are needed to further validate the findings.


Assuntos
Coque , Lipídeos , Metalurgia , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/sangue , Hidrocarbonetos Policíclicos Aromáticos/urina , Adulto , Masculino , Lipídeos/sangue , Pessoa de Meia-Idade , Feminino , Poluentes Ocupacionais do Ar/sangue , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA