Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172304, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604357

RESUMO

Hyperthermophilic composting, characterized by temperatures equal to or exceeding 75 °C, offers superior compost maturity and performance. Inoculation with thermophilic bacteria presents a viable approach to achieving hyperthermophilic composting. This study investigates the effects of inoculating thermophilic bacteria, isolated at different temperatures (50 °C, 60 °C, and 70 °C) into compost on maturity, gaseous emissions, and microbial community dynamics during co-composting. Results indicate that the thermophilic bacteria inoculation treatments exhibited peak temperature on Day 3, with the maximum temperature of 75 °C reached two days earlier than the control treatment. Furthermore, these treatments demonstrated increased bacterial richness and diversity, along with elevated relative abundances of Firmicutes and Proteobacteria. They also fostered mutualistic correlations among microbial species, enhancing network connectivity and complexity, thereby facilitating lignocellulose degradation. Specifically, inoculation with thermophilic bacteria at 60 °C increased the relative abundance of Thermobifida and unclassified-f-Thermomonosporaceae (Actinobacteriota), whereas Bacillus, a thermophilic bacterium, was enriched in the 70 °C inoculation treatment. Consequently, the thermophilic bacteria at 60 °C and 70 °C enhanced maturity by 36 %-50 % and reduced NH3 emissions by 1.08 %-27.50 % through the proliferation of thermophilic heterotrophic ammonia-oxidizing bacteria (Corynebacterium). Moreover, all inoculation treatments decreased CH4 emissions by 6 %-27 % through the enrichment of methanotrophic bacteria (Methylococcaceae) and reduced H2S, Me2S, and Me2SS emissions by 1 %-25 %, 47 %-63 %, and 15 %-53 %, respectively. However, the inoculation treatments led to increased N2O emissions through enhanced denitrification, as evidenced by the enrichment of Truepera and Pusillimonas. Overall, thermophilic bacteria inoculation promoted bacteria associated with compost maturity while attenuating the relationship between core bacteria and gaseous emissions during composting.


Assuntos
Bactérias , Compostagem , Microbiota , Microbiologia do Solo , Compostagem/métodos , Microbiota/fisiologia , Temperatura Alta , Poluentes Atmosféricos/análise
2.
J Environ Manage ; 357: 120809, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583382

RESUMO

Aerobic composting has been considered as a pragmatic technique to convert food waste digestate into high-quality biofertiliser. Nevertheless, massive gaseous emission and immature product remain the primary challenges in food waste digestate composting. Thus, the performance of multi-stage aeration regimes to improve gaseous emissions and organic humification during food waste digestate composting was investigated in this study. In addition to continuous aeration with a constant intensity of 0.3 L kg·dry mass (DM)-1·min-1, two multi-stage decreased aeration regimes were designed as "0.3-0.2-0.1" and "0.3-0.1-0.1" L·kg·DM-1·min-1 from the thermophilic to cooling and then mature stages, respectively. Results showed that the decreased aeration regimes could alleviate nitrous oxide (N2O) and ammonia (NH3) emission and slightly enhance humification during composting. The alleviated N2O and NH3 emission were mainly contributed by abiotically reducing gaseous release potential as well as biotically inactivating denitrifers (Pusillimonas and Pseudidiomarina) and proliferating Atopobium to reduce nitrate availability under lower aeration supply. The "0.3-0.2-0.1 L kg·DM-1·min-1" regime exhibited a more excellent performance to alleviate N2O and NH3 emission by 27.5% and 16.3%, respectively. Moreover, the decreased aeration regimes also favored the enrichment of functional bacteria (Caldicoprobacter and Syntrophomonas) to accelerate lignocellulosic biodegradation and thus humic acid synthesis by 6.5%-11.2%. Given its better performance to improve gaseous emissions and humification, the aeration regime of "0.3-0.2-0.1 L kg·DM-1·min-1" are recommended in food waste digestate composting in practice.


Assuntos
Compostagem , Eliminação de Resíduos , Eliminação de Resíduos/métodos , Perda e Desperdício de Alimentos , Alimentos , Solo , Gases
3.
Environ Sci Technol ; 58(17): 7367-7379, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644786

RESUMO

Composting is widely used for organic waste management and is also a major source of nitrous oxide (N2O) emission. New insight into microbial sources and sinks is essential for process regulation to reduce N2O emission from composting. This study used genome-resolved metagenomics to decipher the genomic structures and physiological behaviors of individual bacteria for N2O sources and sinks during composting. Results showed that several nosZ-lacking denitrifiers in feedstocks drove N2O emission at the beginning of the composting. Such emission became negligible at the thermophilic stage, as high temperatures inhibited all denitrifiers for N2O production except for those containing nirK. The nosZ-lacking denitrifiers were notably enriched to increase N2O production at the cooling stage. Nevertheless, organic biodegradation limited energy availability for chemotaxis and flagellar assembly to restrain nirKS-containing denitrifiers for nitrate reduction toward N2O sources but insignificantly interrupt norBC- and nosZ-containing bacteria (particularly nosZ-containing nondenitrifiers) for N2O sinks by capturing N2O and nitric oxide (NO) for energy production, thereby reducing N2O emission at the mature stage. Furthermore, nosZII-type bacteria included all nosZ-containing nondenitrifiers and dominated N2O sinks. Thus, targeted strategies can be developed to restrict the physiological behaviors of nirKS-containing denitrifiers and expand the taxonomic distribution of nosZ for effective N2O mitigation in composting.


Assuntos
Compostagem , Óxido Nitroso , Óxido Nitroso/metabolismo , Bactérias/metabolismo
4.
Chemosphere ; 352: 141457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38378050

RESUMO

This study assessed the impact of different plant-derived biochar (cornstalk, rice husk, and sawdust) on bacterial community and functions for compost maturity and gaseous emissions during the composting of food waste. Results showed that all biochar strengthened organic biotransformation and caused a higher germination index on day 12 (over 100%), especially for rice husk biochar to enhance the growth of Thermobifida related to aerobic chemoheterotrophy. Rice husk biochar also achieved a relatively higher reduction efficiency of methane (85.8%) and ammonia (82.7%) emissions since its greater porous structure. Besides, the growth of Pseudomonas, Pusillimonas, and Desulfitibacter was restricted to constrict nitrate reduction, nitrite respiration, and sulfate respiration by optimized temperature and air permeability, thus reducing nitrous oxide and hydrogen sulfide emissions by 48.0-57.3% by biochar addition. Therefore, rice husk biochar experienced the optimal potential for maturity increment and gaseous emissions mitigation.


Assuntos
Compostagem , Eliminação de Resíduos , Gases , Perda e Desperdício de Alimentos , Nitrogênio/análise , Alimentos , Solo/química , Carvão Vegetal , Esterco
5.
Chemosphere ; 349: 140816, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040259

RESUMO

Regulating nitrogen source composition is efficient approach to accelerate the spent mushroom substrate (SMS) composting process. However, currently, most traditional composting study only focuses on total C/N ratio of initial composting material. Rarely research concerns the effect of carbon or nitrogen components at different degradable level and their corresponding decomposed-substances on humification process. This study deciphers and compares the mechanism of mixed manure-N sources on SMS humification from bioavailability and molecular perspective. Two different biodegradable manure-N sources, cattle manure (CM) and Hainan chicken manure (CH), were added into the SMS composting with the different CM:CH ratio of 1:0, 3:1, 1:1, 1:3, and 0:1, respectively. The physicochemical properties and humic substances were determined to evaluate the compost quality. Coupling analysis of spectroscopy, fluorescence, and humic intermediate precursors were conducted to characterizing molecular formation process of humic acid (HA). The results indicated that regulating the carbon-nitrogen nutrient biodegradability of composting material by adding mixed nitrogen sources is an effective strategy to accelerate the SMS humification process. The C1H3 (CM:CH ratio of 1:3) and CH treatments obtained great physicochemical properties and the highest growth rate of HA (31.96% and 27.02%, respectively). The rapid reaction of polysaccharide, ketone, quinone, and amide in DOM (LCP1) might be the key for the fast humification in C1H3 and CH. The polyphenol, reducing sugar and amino acid originated from the labile-carbon-proportion I (LCP1) and recalcitrant-carbon-proportion (RCP), labile-carbon-proportion II (LCP2) and RCP, and labile-nitrogen-proportion I (LNP1), respectively, were the main driving intermediate precursors for the formation of HA. This study deciphers the SMS humification mechanism at molecular level and provides a strategy in accelerating-regulating the composting process. which will be beneficial for enhancing the disposing efficiency of SMS, producing high-quality organic fertilizer, and even popularizing to the similar types of organic waste in practical field.


Assuntos
Agaricales , Solo , Animais , Bovinos , Nitrogênio/análise , Esterco/análise , Disponibilidade Biológica , Substâncias Húmicas/análise , Carbono
6.
Bioresour Technol ; 393: 130126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38036150

RESUMO

To investigate the conversion of carbon and nitrogen organic matter to humus mediated by mineral material additives through biotic and abiotic pathways, three chicken manure composting experiments were conducted using calcium superphosphate (CS) and fly ash (FA). Results showed that CS and FA promoted carbon and nitrogen organic degradation and improved compost maturity. The ratio of humic acid-like to fulvic acid-like substances for FA (30) was significantly higher than for control (18) and CS (13). Excitation-emission-matrix spectra and parallel factor analysis identified a higher transformation of protein-like components into humic-like components in FA. Network analysis showed that CS improved compost maturity by promoting the rapid conversion of humus precursors to humus, while FA increased the richness and diversity of the microbial community, such as Chloroflexi, the unique phylum in FA. Overall, CS and FA facilitated the humification process through abiotic and biotic pathways, and FA had better humification performance.


Assuntos
Compostagem , Solo , Nitrogênio/análise , Carbono , Substâncias Húmicas/análise , Esterco , Minerais
7.
Waste Manag ; 171: 502-511, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37806158

RESUMO

The phytotoxicity of the compost aqueous extracts determines the maturity. To improve the accuracy of compost maturity evaluation using the seed germination index (GI) method, different extraction methods (different moisture content and extraction ratio) were designed to obtain samples with various phytotoxic level. This study analyzed the effects of different extraction condition of compost samples on GI, and established the relationship between phytotoxicity and GI. The results showed that the moisture content and extraction ratio of the compost significantly affected the GI. The extraction ratio for the compost with 60-70 % moisture content was 1:10 (ratio of compost mass to extract volume). However, commercial compost, which must have a moisture content of 30-45 %, had an extraction ratio of 1:30 (w:v). More importantly, compost extraction based on dry weight, with a moisture content of 10-15 %, more effectively reflected the phytotoxicity variations during composting. In such cases, the extraction ratio should be at least 1:30 (w:v) but not exceed 1:50 (w:v). The relationship between phytotoxicity and GI showed that dissolved organic carbon and dissolved nitrogen were the most important factors influencing GI, followed by NH4+, electrical conductivity, K, volatile fatty acids, Zn, and Cu. For composts with a GI greater than 70 %, the dissolved organic carbon, dissolved nitrogen, and NH4+ concentrations were below 257, 164, and 73 mg/L, respectively. These findings provide an optimized standard method for compost maturity evaluation using GI and a concentration threshold of key phytotoxicity is proposed to achieve accurate control of compost maturity.

8.
Bioresour Technol ; 387: 129633, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544546

RESUMO

This study aims to reveal the underlying mechanisms of mature compost addition for improving organic waste composting. Composting experiments and metagenomic analysis were conducted to elucidate the role of mature compost addition to regulate microbial metabolisms and physiological behaviors for composting amelioration. Mature compost with or without inactivation pretreatment was added to the composting of kitchen and garden wastes at 0%, 5%, 10%, 15%, and 20% (by wet weight) for comparison. Results show that mature compost promoted pyruvate metabolism, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation to produce heat and energy to accelerate temperature increase for composting initiation and biological contaminant removal (>78%) for pasteurization. Energy requirement drives bacterial chemotactic motility towards nutrient-rich regions to sustain organic biodegradation. Nevertheless, when NADH formation exceeded NAD+ regeneration in oxidative phosphorylation, TCA cycle was restrained to limit continuous temperature increase and recover high intracellular NAD+/NADH ratio to secure stable oxidation reactions.


Assuntos
Compostagem , NAD , Ciclo do Ácido Cítrico , Biodegradação Ambiental , Oxirredução , Solo
9.
Bioresour Technol ; 387: 129682, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586431

RESUMO

This study investigated the effects of free air space (FAS) (45%, 55%, 65%) on bacterial dynamics for gaseous emissions during kitchen waste composting. Results show that FAS increase from 45% to 65% elevated oxygen diffusivity to inhibit bacteria for fermentation (e.g. Caldicoprobacter and Ruminofilibacter) to reduce methane emission by 51%. Moreover, the increased FAS accelerated heat loss to reduce temperature and the abundance of thermophiles (e.g. Thermobifida and Thermobacillus) for aerobic chemoheterotrophy to mitigate ammonia emission by 32%. Nevertheless, the reduced temperature induced the growth of Desulfitibacter and Desulfobulbus for sulfate/sulfite respiration to boost hydrogen sulphide emission. By contrast, FAS at 55% achieved the highest germination index and favored the proliferation of nitrifiers and denitrifiers (e.g. Roseiflexus and Steroidobacter) to improve nitrate availability, thus slightly enhancing nitrous oxide emission. Thus, FAS at 55% exhibits the optimal performance for gaseous emission reduction and maturity enhancement in kitchen waste composting.


Assuntos
Poluentes Atmosféricos , Compostagem , Gases , Poluentes Atmosféricos/análise , Solo , Bactérias
10.
J Environ Manage ; 345: 118651, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499413

RESUMO

Organic solid wastes (OSWs) are important reservoirs for antibiotic resistance genes (ARGs). Aerobic composting transforms OSWs into fertilizers. In this study, we investigated ARGs dynamics and their driving mechanisms in three OSW composts: pig manure (PM), kitchen waste (KC), and sewage sludge (SG). The dominant ARGs were different in each OSW, namely tetracycline, aminoglycoside, and macrolide resistance (PM); tetracyclines and aminoglycosides (KC); and sulfonamides (SG). ARGs abundance decreased in PM (71%) but increased in KC (5.9-fold) and SG (1.3-fold). Interestingly, the ARGs abundance was generally similar in all final composts, which was contributed to the similar bacterial community in final composts. In particular, sulfonamide and ß-lactam resistant genes removed (100%) in PM, while sulfonamide in KC (38-fold) and tetracycline in SG (5-fold) increased the most. Additionally, ARGs abundance rebounded during the maturation period in all treatments. Firmicutes, Proteobacteria, and Actinobacteria were the main ARGs hosts. Several persistent and high-risk genes included tetW, aadA, aadE, tetX, strB, tetA, mefA, intl1, and intl2. The structural equation models showed ARGs removal was mainly affected by physicochemical parameters and bacterial communities in PM, the ARGs enrichment in KC composting correlated with increased mobile genetic elements (MGEs). In general, thermophilic aerobic composting can inhibit the vertical gene transfer (VGT) of pig manure and horizontal gene transfer (HGT) of sludge, but it increases the HGT of kitchen waste, resulting in a dramatic increase of ARGs in KC compost. More attention should be paid to the ARGs risk of kitchen waste composting.


Assuntos
Antibacterianos , Compostagem , Animais , Suínos , Antibacterianos/farmacologia , Esgotos , Tetraciclina , Esterco/microbiologia , Genes Bacterianos , Farmacorresistência Bacteriana , Macrolídeos , Bactérias , Sulfanilamida
11.
J Environ Manage ; 345: 118589, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451027

RESUMO

Although facultative heap composting is widely used in small and medium-sized livestock farms in China, there are few studies on greenhouse gas (GHG) and odor emissions from this composting system. This study focused on GHG and odor emissions from facultative heap composting of four types of livestock manure and revealed the relationship between the gaseous emissions and microbial communities. Results showed that pig, sheep, and cow manure reached high compost maturity (germination index (GI) > 70%), whereas chicken manure had higher phytotoxicity (GI = 0.02%) with higher electrical conductivity and a lower carbon/nitrogen ratio. The four manure types significantly differed in the total GHG emission, with the following pattern: pig manure (308 g CO2-eq·kg-1) > cow manure (146 g CO2-eq·kg-1) > chicken manure (136 g CO2-eq·kg-1) > sheep manure (95 g CO2-eq·kg-1). Bacterium with Fermentative, Methanotrophy and Nitrite respiratory functions (e.g. Pseudomonas and Lactobacillus) are enriched within the pile so that more than 90% of the GHGs are produced in the early (days 0-15) and late (days 36-49) composting periods. CO2 contributed more than 90% in the first 35 d, N2O contributed 40-75% in the late composting period, and CH4 contributed less than 8.0%. NH3 and H2S emissions from chicken and pig manure were 4.8 times those from sheep and cow manure. Overall, the gas emissions from facultative heap composting significantly differed among the four manure types due to the significant differences in their physicochemical properties and microbial communities.


Assuntos
Compostagem , Gases de Efeito Estufa , Animais , Suínos , Ovinos , Gases de Efeito Estufa/análise , Esterco , Gado , Dióxido de Carbono/análise , Odorantes , Solo/química , Gases , Nitrogênio/análise , Galinhas , Metano/análise
12.
Environ Pollut ; 331(Pt 2): 121945, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37268217

RESUMO

This study mapped the fate of antibiotics in a swine farm with integrated waste treatment including anoxic stabilization, fixed-film anaerobic digestion, anoxic-oxic (A/O), and composting. Results show the prevalent and consistent occurrence of 12 antibiotics in swine waste. Mass balance of these antibiotics was calculated to track their flow and evaluate their removal by different treatment units. The integrated treatment train could effectively reduce antibiotic loading to the environment by 90% (measured as combined mass of all antibiotic residues). Within the treatment train, anoxic stabilization as the initial treatment step, accounted for the highest contribution (43%) to overall antibiotic elimination. Results also show that aerobic was more effective than anaerobic regarding antibiotic degradation. Composting accounted for an additional of 31% removal of antibiotics while anaerobic digestion contributed to 15%. After treatment, antibiotic residues in the treated effluent and composted materials were 2 and 8% of the initial antibiotic loading in raw swine waste, respectively. Ecological risk assessment showed negligible or low risk quotient associated with most individual antibiotics released into the aquatic environment or soil from swine farming. Nevertheless, antibiotic residues in treated water and composted materials together showed significant ecological risk to water and soil organisms. Thus, further work to improve treatment performance or develop new technologies is necessary to reduce the impact of antibiotics from swine farming.


Assuntos
Antibacterianos , Compostagem , Animais , Suínos , Agricultura , Fazendas , Solo
13.
Sci Total Environ ; 895: 164947, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336415

RESUMO

This study tracked the fate of nine detected heavy metals in an industrial swine farm with integrated waste treatment, including anoxic stabilization, fixed-film anaerobic digestion, anoxic-oxic (A/O), and composting. Results show that heavy metals exhibited different transformation behaviors in the treatment streamline with Fe, Zn, Cu and Mn as the most abundant ones in raw swine waste. The overall removal of water-soluble heavy metals averaged at 30 %, 24 % and 42 % by anoxic stabilization, anaerobic digestion and A/O unit, respectively. In particular, anoxic stabilization could effectively remove Cu, Mn and Ni; while A/O unit was highly effective for Fe, Cr and Zn elimination from water-soluble states. As such, the environmental risk of liquid products for agricultural irrigation decreased gradually to the safe pollution level in swine waste treatment. Furthermore, heavy metals in the solid (slurry) phase of these bioprocesses could be immobilized with the passivation rate in the range of 42-70 %. Nevertheless, heavy metals preferably transformed from liquid to biosolids to remain their environmental risks when biosolids were used as organic fertilizer in agriculture, thereby requiring effective strategies to advance their passivation in all bioprocesses, particularly composting as the last treatment unit.


Assuntos
Metais Pesados , Animais , Suínos , Biossólidos , Metais Pesados/análise , Poluição Ambiental , Irrigação Agrícola , Monitoramento Ambiental/métodos
14.
Sci Total Environ ; 885: 163900, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146823

RESUMO

The management of manure composting contributes to alleviate the global greenhouse effect. To improve our understanding of this process, we conducted a meta-analysis of 371 observations from 87 published studies in 11 countries. The results showed that the difference in nitrogen content in feces significantly affected the greenhouse gas (GHG) emissions and nutrient losses of subsequent composting, with NH3-N, CO2-C, and CH4-C losses all increasing with its rise. Windrow pile composting (especially compared to trough composting) had lower GHG emissions and nutrient loss. C/N ratio, aeration rate, and pH value significantly affected NH3 emission, and a decrease in the latter two can reduce it by 31.8 % and 42.5 %, respectively. Decreasing the moisture content or increasing the turning frequency could decrease CH4 by 31.8 % and 62.6 %, respectively. The addition of biochar or superphosphate had a synergistic emission reduction. The emission reduction of N2O and CH4 by biochar was more prominent (44 % and 43.6 %), while superphosphate on NH3 (38.0 %) was better. And the latter was more suitable if added in 10-20 % of dry weight. Dicyandiamide was the only chemical additive (59.4 %) with better N2O emission reduction performance. Microbial agents with different functions had certain effects on NH3-N emission reduction, while the mature compost had a certain effect on N2O-N emissions (67.0 %). In general, N2O had the highest contribution to the greenhouse effect during composting (74.22 %).


Assuntos
Compostagem , Gases de Efeito Estufa , Animais , Gases de Efeito Estufa/análise , Compostagem/métodos , Carbono/análise , Nitrogênio/análise , Esterco/análise , Gado , Metano/análise , Dióxido de Carbono/análise , Solo/química , Óxido Nitroso/análise
15.
Waste Manag ; 166: 104-114, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167708

RESUMO

Manure covered by organic materials during the storage has shown that it can effectively reduce emissions of greenhouse gases, but few studies have focused on the bacterial communities in manure or the coverage and mechanism responsible for reducing gas emissions. Therefore, this study investigated the impacts and mechanisms of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. Sheep manure covered by organic material reduced nitrous oxide (N2O) emissions (42.27%-42.55%) relative to uncovered control through physical adsorption and biological transformation of Acinetobacter, Corynebacterium, Brachybacterium, Dietzia and Brevibacterium. Sheep manure covered by organic materials also increased methane (CH4) emissions (16.31%-43.07%) by increasing anaerobic zones of coverage. Overall, coverings reduced carbon dioxide equivalent (CO2eq) by 29.87%-33.60%. Coverings had less effect on the bacterial diversity and community of sheep manure, and the number of bacteria shared by sheep manure and the covering material increased with storage progress, indicating that these bacteria were transferred to the covering materials with gas emissions and moisture volatilization. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) images showed that functional group intensities of the covering materials increased and the fibrous structures became more disordered during the storage period. In general, it was safe to use organic materials as coverages during sheep manure storage, which was conducive to reducing greenhouse gas emissions.


Assuntos
Gases de Efeito Estufa , Ovinos , Animais , Gases de Efeito Estufa/análise , Esterco/análise , Dióxido de Carbono/análise , Metano/análise , Óxido Nitroso/análise
16.
Sci Total Environ ; 889: 164239, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196963

RESUMO

This study assessed the impact of aeration intensity on food waste digestate composting to simultaneously govern organic humification and gaseous emissions. Results show that an augment in the aeration intensity from 0.1 to 0.4 L·kg-1 DM·min-1 provided more oxygen to facilitate organic consumption and thus temperature increase, but slightly restrained organic humification (e.g. less humus content and higher E4/E6 ratio) and substrate maturity (i.e. lower germination index). Furthermore, increasing aeration intensity inhibited the proliferation of the genera Tepidimicrobium and Caldicoprobacter to alleviate methane emission and enriched the genus Atopobium to boost hydrogen sulphide production. More importantly, increasing aeration intensity limited the growth of the genus Acinetobacter for nitrite/nitrogen respiration, but strengthened aerodynamics to blow out nitrous oxide and ammonia produced inside piles. Principal component analysis comprehensively indicated that a low aeration intensity of 0.1 L·kg-1DM·min-1 facilitated precursors synthesis toward humus and simultaneously mitigated gaseous emissions to improve food waste digestate composting.


Assuntos
Compostagem , Eliminação de Resíduos , Gases , Alimentos , Solo
17.
Bioresour Technol ; 371: 128644, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681346

RESUMO

This study investigated the performance and mechanisms of intermittent aeration to regulate gaseous emission and humification during food waste digestate composting. In addition to continuous aeration, three intermittent aeration regimes were conducted with the on-off interval ratio at 3:1, 2:1, and 1:1 within each 30 min, respectively. Results showed that intermittent aeration regimes reduced gaseous emission and enhanced humification during composting. In particular, intermittent aeration with the on/off ratio of 1:1 was more effective to reduce organic mineralization than other regimes, which alleviated the emission of nitrous oxide and ammonia by 63.1% and 75.7% in comparison with continuous aeration, respectively. In addition, this aeration regime also enhanced the content of humic acid by 24.1%. Further analysis demonstrated that prolonging aeration-off intervals could enrich facultative bacteria (e.g. Atopobium and Clostridium) from digestate and inhibit the proliferation of several aerobic bacteria (e.g. Caldicoprobacter and Marinimicrobium) to retard organic mineralization for humification.


Assuntos
Compostagem , Eliminação de Resíduos , Gases , Eliminação de Resíduos/métodos , Alimentos , Solo
18.
J Environ Manage ; 329: 117079, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565502

RESUMO

Accelerating the humification of organic solid waste is one of the most important issues in composting. This present study aims to study and compare the humification process of different rich-N sources (chicken manure, cattle manure, and urea) addition during the composting of mushroom residues, from macro physicochemical properties to micro humic molecular structure evolution process. The physicochemical elements and humic components were determined for evaluating the compost quality and humification degree as composting proceed. The coupled analysis of excitation-emission matrix with parallel factor analysis (EEM-PARAFAC) and two-dimensional correlation with Fourier transform infrared spectrum (2D-FTIR-COS) were used to characterize the functional molecular structure evolution of dissolved organic matter during humification process. The results indicated that the rank order for humification level were the treatments of chicken manure (HM), urea (UM), cattle manure (CM), and single mushroom residue treatment (CK), with their humification index of 22.18%, 22.05%, 18.47%, and 16.52%, respectively. Humic substance, humic acid, and fulvic acid were obtained the highest in HM treatment with contents of 35.41 ± 0.86%, 23.32 ± 1.57%, and 10.97 ± 0.52%, respectively. The rich-N source addition enhanced the degradation of protein-like and polysaccharides-like substances in dissolved organic matter, thus accelerating the humification process of mushroom residues. The key structure evolution of dissolved organic matter in the HM treatment, in which the CO and CC stretching of quinone, amide, or ketone, and the C-O stretching of polysaccharides may be responsible for the faster formation of humus compared to the other nitrogen treatments. In this study, redundancy analysis indicated that the total nitrogen (TN) and nitrate nitrogen (NO3--N) may be the potential indicators for determining the humification level as composting proceed. The result provides significant insight into the humification mechanism of mushroom residue under different types of nitrogen sources at the molecular level, and will be reference for improving the composting technique in practical field.


Assuntos
Agaricales , Esterco , Animais , Bovinos , Matéria Orgânica Dissolvida , Espectroscopia de Infravermelho com Transformada de Fourier , Solo/química , Substâncias Húmicas/análise , Amidas , Nitrogênio/análise
19.
J Environ Manage ; 326(Pt A): 116662, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36347216

RESUMO

To determine factors affecting compost maturity and gaseous emissions during the rapid composting of kitchen waste, an orthogonal test was conducted with three factors: moisture content (MC) (55%, 60%, 65%), aeration rate (AR) (0.3,0.6 and 0.9 L·kg-1DM·min-1) and C/N ratio (21, 24, 27). The results showed that the importance of factors affecting compost maturity was: C/N > AR > MC, optimal conditions were: C/N of 24, AR of 0.3 L·kg-1DM·min-1and MC of 65%. For gaseous emissions, the sequence of essential factors affecting NH3 emissions was: C/N > MC > AR, and the optimal parameters for NH3 reduction were: C/N of 27, MC of 65%, and AR of L·kg-1DM·min-1. The important factors affecting N2O and H2S emissions are both: MC > C/N > AR, while their best parameters were different. The optimal parameters for N2O emission reduction were MC of 60%, AR of 0.3 L·kg-1DM·min-1 and C/N of 24, while these for H2S were MC of 55%, AR of 0.3 L·kg-1DM·min-1 and C/N of 21. The C/N mainly affected the compost maturity and AR further affected the maturity and pollutant gas emissions by influencing the temperature and O2 content. Considering comprehensively the maturity and gaseous reduction, the optimal control parameters were: MC of 60%-65%, AR of L·kg-1DM·min-1, and C/N of 24-27.


Assuntos
Compostagem , Compostagem/métodos , Gases , Solo , Temperatura
20.
Sci Total Environ ; 861: 160611, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36460104

RESUMO

To minimize environmental risks and the phytotoxic influence of organic materials on crop growth, it is necessary to test their phytotoxicity and maturity when they were used in farmland. However, the stress response of seed germination to chicken manure and cornstalks is not clear. This study used multi-omics analysis to investigate the inhibition mechanism of seed germination by chicken manure and cornstalk. Chicken manure caused destructive inhibition of seed germination with higher phytotoxicity (GI = 0). Cornstalk also had a low GI (8.81 %), while it mainly inhibited radicle growth (RL = 9.39 %) rather than seed germination (GR = 93.33 %). The response of radish seed germination to chicken manure and cornstalk phytotoxic stresses was accompanied by metabolic adjustments of storage substance accumulation, antioxidant enzyme activity change, phytohormone induction, and expression of specific proteins and gene regulation. Combined transcriptomic and proteomic analysis revealed that differential expression of 13,090 (5944 upregulated/7146 downregulated) and 3850 (2389 upregulated/1461 downregulated) genes (DEGs), and 1041 (82 upregulated/932 downregulated) and 575 (111 upregulated/464 downregulated) proteins (DEPs) at chicken manure and cornstalk treatment, respectively. Most down-regulated genes and proteins were involved in phenylpropanoid biosynthesis under chicken manure stress, which caused irreversible inhibition of seed germination. Down-regulation of phytohormone signal transduction-related genes under cornstalk stress resulted in inhibition of radicle growth, but the inhibitory stress was restorable. These findings provide new insight into the phytotoxicity of livestock manure and cornstalk on seed germination.


Assuntos
Galinhas , Germinação , Animais , Germinação/fisiologia , Esterco , Sementes/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteômica , Multiômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...