Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 6(2): 565-572, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33529001

RESUMO

Two commonly observed charge transport mechanisms in single-molecule junctions are coherent tunneling and incoherent hopping. It has been generally believed that tunneling processes yield temperature-independent conductance behavior and hopping processes exhibit increasing conductance with increasing temperature. However, it has recently been proposed that tunneling can also yield temperature-dependent transport due to the thermal broadening of the Fermi energy of the contacts. In this work, we examine a series of rigid, planar furan oligomers that are free from a rotational internal degree of freedom to examine the temperature dependence of tunneling transport directly over a wide temperature range (78-300 K). Our results demonstrate conductance transition from a temperature-independent regime to a temperature-dependent regime. By examining various hopping and tunneling models and the correlation between the temperature dependence of conductance and molecular orbital energy offset from the Fermi level, we conclude thermally assisted tunneling is the dominant cause for the onset of temperature-dependent conductance in these systems.


Assuntos
Furanos , Nanotecnologia , Temperatura
2.
Matter ; 3(1): 166-179, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103114

RESUMO

Water molecules can mediate charge transfer in biological and chemical reactions by forming electronic coupling pathways. Understanding the mechanism requires a molecular-level electrical characterization of water. Here, we describe the measurement of single water molecular conductance at room temperature, characterize the structure of water molecules using infrared spectroscopy, and perform theoretical studies to assist in the interpretation of the experimental data. The study reveals two distinct states of water, corresponding to a parallel and perpendicular orientation of the molecules. Water molecules switch from parallel to perpendicular orientations on applying an electric field, producing switching from high to low conductance states, thus enabling the determination of single water molecular dipole moments. The work further shows that water-water interactions affect the atomic scale configuration and conductance of water molecules. These findings demonstrate the importance of the discrete nature of water molecules in electron transfer and set limits on water-mediated electron transfer rates.

3.
Angew Chem Int Ed Engl ; 59(28): 11641-11646, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222017

RESUMO

The exponential proliferation of data during the information age has required the continuous exploration of novel storage paradigms, materials, and devices with increasing data density. As a step toward the ultimate limits in data density, the development of an electrically controllable single-molecule memristive element is reported. In this device, digital information is encoded through switching between two isomer states by applying a voltage signal to the molecular junction, and the information is read out by monitoring the electrical conductance of each isomer. The two states are cycled using an electrically controllable local-heating mechanism for the forward reaction and catalyzed by a single charge-transfer process for the reverse switching. This single-molecule device can be modulated in situ, is fully reversible, and does not display stochastic switching. The I-V curves of this single-molecule system also exhibit memristive character. These features suggest a new approach for the development of molecular switching systems and storage-class memories.

4.
Nano Lett ; 18(10): 6638-6644, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30247037

RESUMO

The configuration of the molecule-electrode contact region plays an important role in determining the conductance of a single-molecule junction, and the variety of possible contact configurations have yielded multiple conductance values for a number of molecular families. In this report, we perform simultaneous conductance and electromechanical coupling parameter measurements on a series of oligophenylene-dithiol single-molecule junctions. These molecules show two distinct conductance values, and by examining the conductance changes, the electromechanical coupling, and the changes in the I- V characteristics coupled with a combination of analytical mechanical models and density functional theory (DFT) structure calculations, we are able to determine the most-probable binding configuration in each of the conductance states. We find that the lower-conductance state is likely due to the thiols binding to each electrode at a gold top site, and in the higher-conductance state, the phenylene π orbitals interact with electrodes, drastically modifying the transport behavior. This approach provides an expanded methodology for exploring the relationship between the molecule-electrode contact configuration and molecular conductance.

5.
J Phys Chem C Nanomater Interfaces ; 121(13): 7094-7100, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28408968

RESUMO

Integrating functional molecules into single-molecule devices is a key step toward the realization of future computing machines based on the smallest possible components. In this context, photoswitching molecules that can make a transition between high and low conductivity in response to light are attractive candidates. Here we present the synthesis and conductance properties of a new type of robust molecular photothermal switch based on the norbornadiene (NB)-quadricyclane (QC) system. The transport through the molecule in the ON state is dominated by a pathway through the π-conjugated system, which is no longer available when the system is switched to the OFF state. Interestingly, in the OFF state we find that the same pathway contributes only 12% to the transport properties. We attribute this observation to the strained tetrahedral geometry of the QC. These results challenge the prevailing assumption that current will simply flow through the shortest through-bond path in a molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...