Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 161(6): 876-88, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12858273

RESUMO

Qualitative analysis of stability in model ecosystems has previously been limited to determining whether a community matrix is sign stable or not with little analytical means to assess the impact of complexity on system stability. Systems are seen as either unconditionally or conditionally stable with little distinction and therefore much ambiguity in the likelihood of stability. First, we reexamine Hurwitz's principal theorem for stability and propose two "Hurwitz criteria" that address different aspects of instability: positive feedback and insufficient lower-level feedback. Second, we derive two qualitative metrics based on these criteria: weighted feedback (wF(n)) and weighted determinants (wDelta(n)). Third, we test the utility of these qualitative metrics through quantitative simulations in a random and evenly distributed parameter space in models of various sizes and complexities. Taken together they provide a practical means to assess the relative degree to which ambiguity has entered into calculations of stability as a result of system structure and complexity. From these metrics we identify two classes of models that may have significant relevance to system research and management. This work helps to resolve some of the impasse between theoretical and empirical discussions on the complexity and stability of natural communities.


Assuntos
Ecossistema , Modelos Teóricos , Dinâmica Populacional , Reprodutibilidade dos Testes
2.
Physiol Biochem Zool ; 75(5): 413-31, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12529843

RESUMO

Redband trout (Oncorhynchus mykiss ssp.) in southeastern Oregon inhabit high-elevation streams that exhibit extreme variability in seasonal flow and diel water temperature. Given the strong influence and potential limitations exerted by temperature on fish physiology, we were interested in how acute temperature change and thermal history influenced the physiological capabilities and biochemical characteristics of these trout. To this end, we studied wild redband trout inhabiting two streams with different thermal profiles by measuring (1) critical swimming speed (U(crit)) and oxygen consumption in the field at 12 degrees and 24 degrees C; (2) biochemical indices of energy metabolism in the heart, axial white skeletal muscle, and blood; and (3) temperature preference in a laboratory thermal gradient. Further, we also examined genetic and morphological characteristics of fish from these two streams. At 12 degrees C, maximum metabolic rate (Mo2max) and metabolic power were greater in Little Blitzen redband trout as compared with those from Bridge Creek (by 37% and 32%, respectively). Conversely, Bridge Creek and Little Blitzen trout had similar values for Mo2max and metabolic power at 24 degrees C. The U(crit) of Little Blitzen trout was similar at the two temperatures (61+/-3 vs. 57+/-4 cm s(-1)). However, the U(crit) for Bridge Creek trout increased from 62+/-3 cm s(-1) to 75+/-3 cm s(-1) when water temperature was raised from 12 degrees to 24 degrees C, and the U(crit) value at 24 degrees C was significantly greater than for Little Blitzen fish. Cost of transport was lower for Bridge Creek trout at both 12 degrees and 24 degrees C, indicating that these trout swim more efficiently than those from the Little Blitzen. Possible explanations for the greater metabolic power of Little Blitzen redband trout at 12 degrees C include increased relative ventricular mass (27%) and an elevation in epaxial white muscle citrate synthase activity (by 72%). Bridge Creek trout had 50% higher lactate dehydrogenase activity in white muscle and presumably a greater potential for anaerobic metabolism. Both populations exhibited a preferred temperature of approximately 13 degrees C and identical mitochondrial haplotypes and p53 gene allele frequencies. However, Bridge Creek trout had a more robust body form, with a relatively larger head and a deeper body and caudal peduncle. In summary, despite the short distance ( approximately 10 km) and genotypic similarity between study streams, our results indicate that phenotypic reorganization of anatomical characteristics, swimming ability at environmentally pertinent temperatures and white axial muscle ATP-producing pathways occurs in redband trout.


Assuntos
Metabolismo Energético , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/fisiologia , Natação/fisiologia , Aclimatação , Trifosfato de Adenosina/metabolismo , Animais , Análise Química do Sangue , Citrato (si)-Sintase/metabolismo , DNA Mitocondrial/genética , Feminino , Água Doce , Frequência do Gene , Haplótipos/genética , L-Lactato Desidrogenase/metabolismo , Masculino , Músculo Esquelético/enzimologia , Oncorhynchus mykiss/sangue , Oncorhynchus mykiss/genética , Consumo de Oxigênio , Fenótipo , Temperatura , Fatores de Tempo , Água/análise , Equilíbrio Hidroeletrolítico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...